Mechanistic aspects of the effects of stress on the rates of photochemical degradation reactions in polymers

被引:57
|
作者
Tyler, DR [1 ]
机构
[1] Univ Oregon, Dept Chem, Eugene, OR 97403 USA
来源
基金
美国国家科学基金会;
关键词
photochemical degradation; radical-radical recombination; auto-oxidation; photo-oxidation; stress effects;
D O I
10.1081/MC-200033682
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
This review examines the mechanistic origins of the effects of stress on the photochemical degradation rates of polymers. Recent studies have shown that tensile and shear stresses accelerate the rate of the photochemical degradation of polymers. Conversely, compressive stress generally retards the rate of photochemical degradation. After an initial discussion of the photochemical auto-oxidation mechanism, the three primary hypotheses that purport to explain how stress affects photochemical degradation are examined. The first hypothesis is attributed to Plotnikov, who proposed that stress changes the quantum yields of the reactions that lead to bond photolysis. The second hypothesis, attributed to a number of researchers, says that stress affects the ability of the geminate radical pairs, formed in the photochemical bond cleavage reactions, to recombine. The third hypothesis proposes that stress changes the rates of radical reactions subsequent to radical formation. A further attempt to account for the effects of stress on degradation rates is a modification of the so-called Zhurkov equation that has been used rather successfully to predict the effects of stress on degradation rates in thermal reactions. This empirical equation relates the quantum yield of degradation to a composite activation barrier for the overall photochemical reaction. Following the discussion of these hypotheses, experimental mechanistic studies of stress effects are summarized, and what little data there is is shown to be consistent with the hypothesis that proposes that stress primarily affects the ability of photochemically generated radical pairs to recombine. By decreasing the efficiency of radical-radical recombination, the effect is to increase the relative efficiencies of the radicals' other reactions and hence the rate of degradation. In addition to stress, other factors can affect the rates of polymer photodegradation. These factors include the absorbed light intensity, the polymer morphology, the rate of oxygen diffusion in the polymer, and the chromophore concentration. Each of these parameters must be carefully controlled in mechanistic studies that probe the effects of stress on degradation rates.
引用
收藏
页码:351 / 388
页数:38
相关论文
共 50 条