Multiple-trait genomic evaluation for milk yield and milk quality traits using genomic and phenotypic data in buffalo in Brazil

被引:14
|
作者
Aspilcueta-Borquis, R. R. [1 ]
Araujo Neto, F. R. [2 ]
Santos, D. J. A. [3 ]
Hurtado-Lugo, N. A. [3 ]
Silva, J. A. V. [1 ]
Tonhati, H. [3 ]
机构
[1] Univ Estadual Paulista, Fac Med Vet & Zootecnia, Botucatu, SP, Brazil
[2] Inst Fed Ciencia & Tecnol Goiano, Rio Verde, Go, Brazil
[3] Univ Estadual Paulista, Fac Ciencias Agr & Vet, Jaboticabal, SP, Brazil
来源
GENETICS AND MOLECULAR RESEARCH | 2015年 / 14卷 / 04期
基金
巴西圣保罗研究基金会;
关键词
Accuracy; Genomics; Milk quality; SOMATIC-CELL COUNT; GENETIC-PARAMETERS; FULL PEDIGREE; PREDICTION; INFORMATION; SELECTION; ACCURACY; SCORE;
D O I
10.4238/2015.December.22.27
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The objective of this study was to compare the multi-trait model using pedigree information and a model using genomic information in addition to pedigree information. We used data from 5896 lactations of 2021 buffalo cows, of which 384 were genotyped using the Illumina Infinium (R) bovine HD BeadChip, considering seven traits related to milk yield (MY305), fat (FY305), protein (PY305), and lactose (LY305), percentages of fat (% F) and protein (% P), and somatic cell score (SCS). We carried out two analyses, one using phenotype and pedigree information (matrix A) and the other using the relationship matrix based on pedigree and genomics information (a single step, matrix H). The (co) variance components were estimated using multiple-trait analysis by the Bayesian inference method. The model included the fixed effects of contemporary groups (herd-year and calving season), and the age of cow at calving as (co) variables (quadratic and linear effect). The additive genetic, permanent environmental, and residual effects were included as random effects in the model. The estimates of heritability using matrix A were 0.25, 0.22, 0.26, 0.25, 0.37, 0.42, and 0.17, while using matrix H the heritability values were 0.25, 0.24, 0.26, 0.26, 0.38, 0.47, and 0.18 for MY305, FY305, PY305, LY305, % F, % P, and SCS, respectively. The estimates of breeding values in the two analyses were similar for the traits studied, but the accuracies were greater when using matrix H (higher than 8% in the traits studied). Therefore, the use of genomic information in the analyses improved the accuracy.
引用
收藏
页码:18009 / 18017
页数:9
相关论文
共 50 条
  • [1] Multiple-trait genomic evaluation for milk yield and milk quality traits using genomic and phenotypic data in buffalo in Brazil
    Tonhati, Humberto
    Aspilcueta-Borquis, Rusbel Raul
    de Freitas, Ana Claudia
    Ferreira De Camargo, Gregorio Miguel
    Baldi, Fernando
    BUFFALO BULLETIN, 2013, 32 : 746 - 749
  • [2] Multiple-trait genomic evaluation of linear type traits using genomic and phenotypic data in US Holsteins
    Tsuruta, S.
    Misztal, I.
    Aguilar, I.
    Lawlor, T. J.
    JOURNAL OF DAIRY SCIENCE, 2011, 94 (08) : 4198 - 4204
  • [3] Multiple-trait genetic evaluation using genomic matrix
    Rostami-Angasi, Mahboubeh
    Sodagar-Amiri, Ahmad
    AFRICAN JOURNAL OF BIOTECHNOLOGY, 2011, 10 (33): : 6198 - 6202
  • [4] Short communication: Single-step genomic evaluation of milk production traits using multiple-trait random regression model in Chinese Holsteins
    Kang, H.
    Ning, C.
    Zhou, L.
    Zhang, S.
    Yan, Q.
    Liu, J-F
    JOURNAL OF DAIRY SCIENCE, 2018, 101 (12) : 11143 - 11149
  • [5] Multiple-trait genomic prediction for swine meat quality traits using gut microbiome features as a correlated trait
    Tiezzi, Francesco
    Schwab, Clint
    Shull, Caleb
    Maltecca, Christian
    JOURNAL OF ANIMAL BREEDING AND GENETICS, 2025, 142 (01) : 102 - 117
  • [6] Genetic parameters for buffalo milk yield and milk quality traits using Bayesian inference
    Aspilcueta-Borquis, R. R.
    Araujo Neto, F. R.
    Baldi, F.
    Bignardi, A. B.
    Albuquerque, L. G.
    Tonhati, H.
    JOURNAL OF DAIRY SCIENCE, 2010, 93 (05) : 2195 - 2201
  • [7] Multiple-trait QTL mapping and genomic prediction for wool traits in sheep
    Bolormaa, Sunduimijid
    Swan, Andrew A.
    Brown, Daniel J.
    Hatcher, Sue
    Moghaddar, Nasir
    van der Werf, Julius H.
    Goddard, Michael E.
    Daetwyler, Hans D.
    GENETICS SELECTION EVOLUTION, 2017, 49
  • [8] Multiple-trait QTL mapping and genomic prediction for wool traits in sheep
    Sunduimijid Bolormaa
    Andrew A. Swan
    Daniel J. Brown
    Sue Hatcher
    Nasir Moghaddar
    Julius H. van der Werf
    Michael E. Goddard
    Hans D. Daetwyler
    Genetics Selection Evolution, 49
  • [9] Prediction of Multiple-Trait and Multiple-Environment Genomic Data Using Recommender Systems
    Montesinos-Lopez, Osval A.
    Montesinos-Lopez, Abelardo
    Crossa, Jose
    Montesinos-Lopez, Jose C.
    Mota-Sanchez, David
    Estrada-Gonzalez, Fermin
    Gillberg, Jussi
    Singh, Ravi
    Mondal, Suchismita
    Juliana, Philomin
    G3-GENES GENOMES GENETICS, 2018, 8 (01): : 131 - 147
  • [10] Prospecting genomic regions associated with milk production traits in Egyptian buffalo
    Abdel-Shafy, Hamdy
    Awad, Mohamed A. A.
    El-Regalaty, Hussein
    El-Assal, S. E-D
    Abou-Bakr, Samy
    JOURNAL OF DAIRY RESEARCH, 2020, 87 (04) : 389 - 396