Multiple-test procedures and smile plots

被引:86
|
作者
Newson, Roger [1 ]
机构
[1] Kings Coll London, London, England
[2] Univ Bristol, Bristol, Avon, England
来源
STATA JOURNAL | 2003年 / 3卷 / 02期
基金
英国医学研究理事会; 英国惠康基金;
关键词
st0035; smile plot; multiple-test procedure; closed testing procedure; data mining; family-wise error rate; false discovery rate; Bonferroni; Sidak; Holm; Holland; Copenhaver; Hochberg; Rom; Simes; Benjamini; Yekutieli; Krieger; Liu;
D O I
10.1177/1536867X0300300202
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
multproc carries out multiple-test procedures, taking as input a list of p-values and an uncorrected critical p-value, and calculating a corrected overall critical p-value for rejection of null hypotheses. These procedures define a confidence region for a set-valued parameter, namely the set of null hypotheses that are true. They aim to control either the family-wise error rate (FWER) or the false discovery rate (FDR) at a level no greater than the uncorrected critical p-value. smileplot calls multproc and then creates a smile plot, with data points corresponding to estimated parameters, the p-values (on a reverse log scale) on the y-axis, and the parameter estimates (or another variable) on the x-axis. There are y-axis reference lines at the uncorrected and corrected overall critical p-values. The reference line for the corrected overall critical p-value, known as the parapet line, is an informal "upper confidence limit" for the set of null hypotheses that are true and defines a boundary between data mining and data dredging. A smile plot summarizes a set of multiple analyses just as a Cochrane forest plot summarizes a meta-analysis.
引用
收藏
页码:109 / 132
页数:24
相关论文
共 50 条