Multiple-test procedures and smile plots

被引:86
|
作者
Newson, Roger [1 ]
机构
[1] Kings Coll London, London, England
[2] Univ Bristol, Bristol, Avon, England
来源
STATA JOURNAL | 2003年 / 3卷 / 02期
基金
英国医学研究理事会; 英国惠康基金;
关键词
st0035; smile plot; multiple-test procedure; closed testing procedure; data mining; family-wise error rate; false discovery rate; Bonferroni; Sidak; Holm; Holland; Copenhaver; Hochberg; Rom; Simes; Benjamini; Yekutieli; Krieger; Liu;
D O I
10.1177/1536867X0300300202
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
multproc carries out multiple-test procedures, taking as input a list of p-values and an uncorrected critical p-value, and calculating a corrected overall critical p-value for rejection of null hypotheses. These procedures define a confidence region for a set-valued parameter, namely the set of null hypotheses that are true. They aim to control either the family-wise error rate (FWER) or the false discovery rate (FDR) at a level no greater than the uncorrected critical p-value. smileplot calls multproc and then creates a smile plot, with data points corresponding to estimated parameters, the p-values (on a reverse log scale) on the y-axis, and the parameter estimates (or another variable) on the x-axis. There are y-axis reference lines at the uncorrected and corrected overall critical p-values. The reference line for the corrected overall critical p-value, known as the parapet line, is an informal "upper confidence limit" for the set of null hypotheses that are true and defines a boundary between data mining and data dredging. A smile plot summarizes a set of multiple analyses just as a Cochrane forest plot summarizes a meta-analysis.
引用
收藏
页码:109 / 132
页数:24
相关论文
共 50 条
  • [1] Frequentist q-values for multiple-test procedures
    Newson, Roger B.
    STATA JOURNAL, 2010, 10 (04): : 568 - 584
  • [2] Preliminary Multiple-Test Estimation, With Applications to k-Sample Covariance Estimation
    Paindaveine, Davy
    Rasoafaraniaina, Josea
    Verdebout, Thomas
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (540) : 1904 - 1915
  • [3] Exploring the information in p-values for the analysis and planning of multiple-test experiments
    Ruppert, David
    Nettleton, Dan
    Hwang, J. T. Gene
    BIOMETRICS, 2007, 63 (02) : 483 - 495
  • [4] Multiple-test analysis of sequences of SNPs for determining susceptibility to Pre-eclampsia
    Fiaschi, Linda
    Garibaldi, Jonathan M.
    Krasnogor, Natalio
    Frontiers in Artificial Intelligence and Applications, 2009, 196 (01) : 141 - 154
  • [5] Impact of a multiple-test strategy on breeding index development for the Australian dairy industry
    Axford, Michelle
    Santos, Bruno
    Stachowicz, Katarzyna
    Quinton, Cheryl
    Pryce, Jennie E.
    Amer, Peter
    ANIMAL PRODUCTION SCIENCE, 2021, 61 (18) : 1940 - 1950
  • [6] A multiple-test study of anxiety-related behaviours in six inbred rat strains
    Ramos, A
    Berton, O
    Mormede, P
    Chaouloff, F
    BEHAVIOURAL BRAIN RESEARCH, 1997, 85 (01) : 57 - 69
  • [7] ‘Multiple-test’ approach to the laboratory diagnosis of tuberculosis -perception of medical doctors from Ujjain, India
    Manju Raj Purohit
    Megha Sharma
    Senia Rosales-Klintz
    Cecilia Stålsby Lundborg
    BMC Infectious Diseases, 15
  • [8] ON THE COMPARISON OF MULTIPLE TEST PROCEDURES
    WINE, RL
    BIOMETRICS, 1956, 12 (04) : 535 - 535
  • [9] 'Multiple-test' approach to the laboratory diagnosis of tuberculosis -perception of medical doctors from Ujjain, India
    Purohit, Manju Raj
    Sharma, Megha
    Rosales-Klintz, Senia
    Lundborg, Cecilia Stalsby
    BMC INFECTIOUS DISEASES, 2015, 15
  • [10] Smile plots to identify adverse drug reactions
    Schoonen, W. Marieke
    Evans, Stephen J. W.
    Hall, Andrew J.
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2007, 16 : S253 - S254