Potassium intercalated multiwalled carbon nanotubes

被引:16
|
作者
Chacon-Torres, J. C. [1 ]
Dzsaber, S. [2 ,3 ]
Vega-Diaz, S. M. [4 ]
Akbarzadeh, J. [5 ]
Peterlik, H. [5 ]
Kotakoski, J. [5 ]
Argentero, G. [5 ]
Meyer, J. C. [5 ]
Pichler, T. [5 ]
Simon, F. [2 ,3 ]
Terrones, M. [6 ]
Reich, S. [1 ]
机构
[1] Free Univ Berlin, Expt Phys, Arnimallee 14, D-14195 Berlin, Germany
[2] Budapest Univ Technol & Econ, Dept Phys, POB 91, H-1521 Budapest, Hungary
[3] MTA BME Lendlet Spintron Res Grp PROSPIN, POB 91, H-1521 Budapest, Hungary
[4] Technol Inst Celaya, Ave Tecnol Esquina Con Garcia Cubas S-N, Celaya 38010, Gto, Mexico
[5] Univ Vienna, Fac Phys, Strudlhofgasse 4, A-1090 Vienna, Austria
[6] Penn State Univ, Dept Phys, Dept Chem, Dept Mat Sci & Engn,Ctr Dimens & Layered Mat 2, 104 Davey Lab, University Pk, PA 16802 USA
基金
欧洲研究理事会;
关键词
SUPERCONDUCTIVITY;
D O I
10.1016/j.carbon.2016.04.016
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Full intralayer potassium intercalation in multiwalled carbon nanotubes MWCNTs was achieved by carefully engineering the nanotube morphology (length, width, and number of layers). The complete intercalation induced a high doping resulting in metallic nanotubes with a bright golden color. The successful intercalation of MWCNTs serves as a first step for obtaining controlled graphene nano-ribbons through exfoliation and potentially preparing superconducting nanotubes. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:90 / 95
页数:6
相关论文
共 50 条
  • [41] Preparation and structure of multiwalled carbon nanotubes
    Baitinger, E. M.
    Kovalev, I. N.
    Vekesser, N. A.
    Viktorov, V. V.
    Zherebtsov, D. A.
    Uchaev, D. A.
    Sergeeva, S. A.
    Bekhterev, A. N.
    [J]. INORGANIC MATERIALS, 2012, 48 (03) : 249 - 251
  • [42] Surfactant removal with multiwalled carbon nanotubes
    Gao, Qian
    Chen, Weixiao
    Chen, Yin
    Werner, David
    Cornelissen, Gerard
    Xing, Baoshan
    Tao, Shu
    Wang, Xilong
    [J]. WATER RESEARCH, 2016, 106 : 531 - 538
  • [43] Multishell conduction in multiwalled carbon nanotubes
    P.G. Collins
    Ph. Avouris
    [J]. Applied Physics A, 2002, 74 : 329 - 332
  • [44] Features of the oxidation of multiwalled carbon nanotubes
    S. V. Savilov
    A. S. Ivanov
    S. A. Chernyak
    M. N. Kirikova
    J. Ni
    V. V. Lunin
    [J]. Russian Journal of Physical Chemistry A, 2015, 89 : 1989 - 1996
  • [45] ESD Investigations of Multiwalled Carbon Nanotubes
    Shrivastava, Mayank
    Kulshrestha, Neha
    Gossner, Harald
    [J]. IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, 2014, 14 (01) : 555 - 563
  • [46] Industrial production of multiwalled carbon nanotubes
    Bierdel, M.
    Buchholz, S.
    Michele, V.
    Mleczko, L.
    Rudolf, R.
    Voetz, M.
    Wolf, A.
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2007, 244 (11): : 3939 - 3943
  • [47] Optimal configurations of multiwalled carbon nanotubes
    Zhang, SL
    [J]. PHYSICAL REVIEW B, 2002, 65 (23) : 1 - 7
  • [48] Thermodynamic properties of multiwalled carbon nanotubes
    V. B. Muratov
    O. O. Vasil’ev
    L. M. Kulikov
    V. V. Garbuz
    Yu. V. Nesterenko
    T. I. Duda
    [J]. Journal of Superhard Materials, 2012, 34 : 173 - 178
  • [49] Magnetotransport in bundles of intercalated carbon nanotubes
    Baxendale, M
    Mordkovich, VZ
    Yoshimura, S
    Chang, RPH
    [J]. PHYSICAL REVIEW B, 1997, 56 (04): : 2161 - 2165
  • [50] NMR on cesium intercalated carbon nanotubes
    Schmid, M
    Goze-Bac, C
    Mehring, M
    Roth, S
    Bernier, P
    [J]. ELECTRONIC PROPERTIES OF SYNTHETIC NANOSTRUCTURES, 2004, 723 : 181 - 184