X2 goodness-of-fit tests for polynomial regression

被引:1
|
作者
Novo, LAR [1 ]
Manteiga, WG [1 ]
机构
[1] Univ Santiago de Compostela, Dept Estatistica & Invest Operat, Santiago De Compostela 15706, Spain
关键词
regression models; nonparametric estimation;
D O I
10.1080/03610919808813477
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the context of nonparametric regression models, we propose a very general procedure to test the goodness-of-fit of the regression function underlying in a set of (z(i), y(i)) data, to a polynomial type family of regression curves. Test statistics are based on residual sums of squares obtained by a comparison of a nonparametric fit, HY, versus a parametric fit, PY, via RSS (HY, PY) = (HY - PY)(T)(HY - PY) or versus a smoothed parametric fit, via RSS (HY, HPY) = (HY - HPY)(T)(HY - HPY). A chi(2) distribution with degrees of freedom determined by the hat matrixes H and P is used to approximate the distribution of test statistics. The proposed procedure generalizes classical least squares theory and involves a variety of different nonparametric smoothing techniques. A comparison among chi(2) tests with different smoothing techniques and with previous procedures based on a normal distribution and bootstrap is made by means of a simulation study.
引用
收藏
页码:229 / 258
页数:30
相关论文
共 50 条
  • [41] THE USE OF MAXIMUM LIKELIHOOD ESTIMATES IN X2 TESTS FOR GOODNESS OF FIT
    CHERNOFF, H
    LEHMANN, EL
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1954, 25 (03): : 579 - 586
  • [42] A Bayesian goodness-of-fit test for regression
    Barrientos, Andres F.
    Canale, Antonio
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 155
  • [43] Goodness-of-fit tests based on series estimators in nonparametric instrumental regression
    Breunig, Christoph
    [J]. JOURNAL OF ECONOMETRICS, 2015, 184 (02) : 328 - 346
  • [44] Goodness-of-fit tests in parametric regression based on the estimation of the error distribution
    Ingrid Van Keilegom
    Wenceslao González Manteiga
    César Sánchez Sellero
    [J]. TEST, 2008, 17 : 401 - 415
  • [45] COMPUTATIONALLY EFFICIENT GOODNESS-OF-FIT TESTS FOR THE ERROR DISTRIBUTION IN NONPARAMETRIC REGRESSION
    Rivas-Martinez, G. I.
    Jimenez-Gamero, M. D.
    [J]. REVSTAT-STATISTICAL JOURNAL, 2018, 16 (01) : 137 - 166
  • [46] Bootstrap based goodness-of-fit tests for binary multivariate regression models
    Mareike van Heel
    Gerhard Dikta
    Roel Braekers
    [J]. Journal of the Korean Statistical Society, 2022, 51 : 308 - 335
  • [47] Goodness-of-fit tests in parametric regression based on the estimation of the error distribution
    Van Keilegom, Ingrid
    Manteiga, Wenceslao Gonzalez
    Sellero, Cesar Sanchez
    [J]. TEST, 2008, 17 (02) : 401 - 415
  • [48] Goodness-of-fit tests for censored regression based on artificial data points
    Gonzalez Manteiga, Wenceslao
    Heuchenne, Cedric
    Sanchez Sellero, Cesar
    Beretta, Alessandro
    [J]. TEST, 2020, 29 (02) : 599 - 615
  • [49] Two goodness-of-fit tests for logistic regression models with continuous covariates
    Pulkstenis, E
    Robinson, TJ
    [J]. STATISTICS IN MEDICINE, 2002, 21 (01) : 79 - 93
  • [50] Goodness-of-fit tests for kernel regression with an application to option implied volatilities
    Aït-Sahalia, Y
    Bickel, PJ
    Stoker, TM
    [J]. JOURNAL OF ECONOMETRICS, 2001, 105 (02) : 363 - 412