The inverse Sturm-Liouville problem: Uniqueness theorems and counterexamples

被引:1
|
作者
Sadovnichii, V. A.
Sultanaev, Ya. T.
Akhtyamov, A. M.
机构
[1] Moscow MV Lomonosov State Univ, Moscow 119992, Russia
[2] Bashkortostan State Univ, Fac Econ, Ufa 450074, Bashkortostan, Russia
关键词
D O I
10.1134/S1064562406060263
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A number of methods were proposed to generate the uniqueness theorems and counterexamples of the Inverse Sturm-Liouville Problem that is an integrable function. The study of the inverse problem with indecomposable boundary conditions dealt with the reconstruction of the function for the self-adjoint Sturm-Liouville problem with periodic and antiperiodic boundary conditions. A method using certain mappings of spaces of solutions given in matrix form was also applied to study the inverse problems. A set of eigenvalues of the problem, eigenvalues of two auxiliary problems, and additional spectral data were needed to reconstruct the problem. It was found that the algebraic multiplicity of each eigenvalue coincides with that of the corresponding root of the function. The results show that any sufficiently large eigenvalues with numbers of different parity can be used for the inverse problems.
引用
收藏
页码:889 / 892
页数:4
相关论文
共 50 条
  • [41] INVERSE PROBLEM FOR STURM-LIOUVILLE AND HILL EQUATIONS
    IWASAKI, K
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 1987, 149 : 185 - 206
  • [42] ITERATIVE SOLUTION OF INVERSE STURM-LIOUVILLE PROBLEM
    BARCILON, V
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (04) : 429 - 436
  • [43] On the missing eigenvalue problem for an inverse Sturm-Liouville problem
    Wei, Guangsheng
    Xu, Hong-Kun
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 91 (05): : 468 - 475
  • [44] INVERSE PROBLEM FOR STURM-LIOUVILLE OPERATORS ON A CURVE
    Golubkov, Andrey Alexandrovich
    Kuryshova, Yulia Vladimirovna
    [J]. TAMKANG JOURNAL OF MATHEMATICS, 2019, 50 (03): : 349 - 359
  • [45] THE INVERSE STURM-LIOUVILLE PROBLEM .3.
    DAHLBERG, BEJ
    TRUBOWITZ, E
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (02) : 255 - 267
  • [46] Uniqueness Properties of The Solution of The Inverse Problem for The Sturm-Liouville Equation With Discontinuous Leading Coefficient
    Adiloglu, Anar
    Gurdal, Mehmet
    Kinci, Ayse N.
    [J]. ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2017, 89 (04): : 2547 - 2561
  • [47] On the Uniqueness of the Solution of the Inverse Sturm-Liouville Problem with Nonseparated Boundary Conditions on a Geometric Graph
    Sadovnichy, V. A.
    Sultanaev, Ya. T.
    Aklityamov, A. M.
    [J]. DOKLADY MATHEMATICS, 2018, 98 (01) : 338 - 340
  • [48] UNIQUENESS OF STURM-LIOUVILLE COEFFICIENTS
    WRAY, SD
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1975, 73 : 65 - 75
  • [49] A uniqueness theorem for inverse eigenparameter dependent Sturm-Liouville problems
    Browne, PJ
    Sleeman, BD
    [J]. INVERSE PROBLEMS, 1997, 13 (06) : 1453 - 1462
  • [50] Sturm's theorems for generalized derivative and generalized Sturm-Liouville problem
    Pandey, Prashant K.
    Pandey, Rajesh K.
    Agrawal, Om P.
    [J]. MATHEMATICAL COMMUNICATIONS, 2023, 28 (01) : 141 - 152