Affine-invariant aligned rank tests for the multivariate general linear model with VARMA errors

被引:23
|
作者
Hallin, M
Paindaveine, D
机构
[1] Free Univ Brussels, Dept Math, B-1050 Brussels, Belgium
[2] Free Univ Brussels, ISRO, ECARES, B-1050 Brussels, Belgium
关键词
multivariate ranks and signs; affine-invariant inference; VARMA models;
D O I
10.1016/j.jmva.2004.01.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop optimal rank-based procedures for testing affine-invariant linear hypotheses on the parameters of a multivariate general linear model with elliptical VARMA errors. We propose a class of optimal procedures that are based either on residual (pseudo-)Mahalanobis signs and ranks, or on absolute interdirections and lift-interdirection ranks, i.e., on hyperplane-based signs and ranks. The Mahalanobis versions of these procedures are strictly affine-invariant, while the hyperplane-based ones are asymptotically affine-invariant. Both versions generalize the univariate signed rank procedures proposed by Hallin and Puri (J. Multivar. Anal. 50 (1994) 175), and are locally asymptotically most stringent under correctly specified radial densities. Their AREs with respect to Gaussian procedures are shown to be convex linear combinations of the AREs obtained in Hallin and Paindaveine (Ann. Statist. 30 (2002) 1103; Bernoulli 8 (2002) 787) for the pure location and purely serial models, respectively. The resulting test statistics are provided under closed form for several important particular cases, including multivariate Durbin-Watson tests, VARMA order identification tests, etc. The key technical result is a multivariate asymptotic linearity result proved in Hallin and Paindaveine (Asymptotic linearity of serial and nonserial multivariate signed rank statistics, submitted). (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:122 / 163
页数:42
相关论文
共 50 条
  • [41] Linear rank tests for competing risks model
    Hu, XS
    Tsai, WY
    [J]. STATISTICA SINICA, 1999, 9 (04) : 971 - 983
  • [42] ADMISSIBILITY OF INVARIANT TESTS IN THE GENERAL MULTIVARIATE-ANALYSIS OF VARIANCE PROBLEM
    MARDEN, JI
    [J]. ANNALS OF STATISTICS, 1983, 11 (04): : 1086 - 1099
  • [43] ALIGNED RANK-TESTS FOR LINEAR-MODELS WITH AUTOCORRELATED ERROR TERMS
    HALLIN, M
    PURI, ML
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1994, 50 (02) : 175 - 237
  • [44] Nonparametric tests in linear model with autoregressive errors
    Jana Jurečková
    Olcay Arslan
    Yeşim Güney
    Jan Picek
    Martin Schindler
    Yetkin Tuaç
    [J]. Metrika, 2023, 86 : 443 - 453
  • [45] Nonparametric tests in linear model with autoregressive errors
    Jureckova, Jana
    Arslan, Olcay
    Guney, Yesim
    Picek, Jan
    Schindler, Martin
    Tuac, Yetkin
    [J]. METRIKA, 2023, 86 (04) : 443 - 453
  • [46] Affine invariant depth-based tests for the multivariate one-sample location problem
    Dehghan, Sakineh
    Faridrohani, Mohammad Reza
    [J]. TEST, 2019, 28 (03) : 671 - 693
  • [47] Affine invariant depth-based tests for the multivariate one-sample location problem
    Sakineh Dehghan
    Mohammad Reza Faridrohani
    [J]. TEST, 2019, 28 : 671 - 693
  • [48] Affine-invariant face detection and localization using GMM-based feature detector and enhanced appearance model
    Hamouz, M
    Kittler, J
    Kamarainen, JK
    Paalanen, P
    Kälviäinen, H
    [J]. SIXTH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION, PROCEEDINGS, 2004, : 67 - 72
  • [49] Rank tests in heteroscedastic linear model with nuisance parameters
    Jana Jurečková
    Radim Navrátil
    [J]. Metrika, 2014, 77 : 433 - 450
  • [50] Rank tests in heteroscedastic linear model with nuisance parameters
    Jureckova, Jana
    Navratil, Radim
    [J]. METRIKA, 2014, 77 (03) : 433 - 450