Mantle discontinuity structure beneath the Colorado Rocky Mountains and High Plains

被引:132
|
作者
Dueker, KG
Sheehan, AF
机构
[1] Univ Colorado, Dept Geol Sci, Boulder, CO 80309 USA
[2] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
关键词
D O I
10.1029/97JB03509
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Analysis of mantle discontinuity structure using converted P to S (P(d)s) phases beneath Colorado from the Program for Array Seismic Studies of the Continental Lithosphere (PASSCAL) Rocky Mountain Front (RMF) experiment reveals significant topography at the 410 and 660 km depth discontinuities and corresponding transition zone thickness variations. A stack of all radial receiver functions resolves the 410 and 660 km discontinuities at average depths of 419 and 677 km, respectively. Imaging of lateral variations in mantle discontinuity structure is accomplished by geographically binning the P(d)s conversion points and then stacking the receiver functions in each bin to form spatial images, analogous to common depth point stacking. Corrections for lateral velocity heterogeneity are calculated using the local S wave tomographic model of Lee and Grand [1996] and a constant partial derivative ln V-S/partial derivative ln V-P scaling of 1.3. This scaling value is determined from the relative scaling between teleseismic P and S wave travel time residuals measured from the Rocky Mountain Front deployment. Mantle discontinuity images using 150 km square bins show 20 km of 410 km discontinuity topography, 30 km of 660 km discontinuity topography, and up to 40 km of transition zone thickness variation. Features of the discontinuity structure include a 20 lan depression of the 660 lan discontinuity beneath western Colorado and a gradual 10 km dip of the 410 km discontinuity beneath the High Plains. The thickening of the transition zone beneath southwest Colorado is consistent with the presence of the subducted Farallon slab in this region as imaged by Van der Lee and Nolet [1997]. In general, our results show that the transition zone discontinuity structure is more complex than that predicted by the simple model of olivine phase boundaries modulated by vertically coherent thermal anomalies.
引用
收藏
页码:7153 / 7169
页数:17
相关论文
共 50 条
  • [21] Upper mantle discontinuity structure beneath the Hindu Kush:Insights into dynamics of the Indian slab
    Qinghui CUI
    Yuanze ZHOU
    Yuan GAO
    Lijun LIU
    Science China Earth Sciences, 2025, 68 (03) : 720 - 729
  • [22] The crust and upper mantle discontinuity structure beneath Alaska inferred from receiver functions
    Ai, YH
    Zhao, DP
    Gao, X
    Xu, WW
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2005, 150 (04) : 339 - 350
  • [23] Upper mantle discontinuity structure beneath the Hindu Kush: Insights into dynamics of the Indian slab
    Qinghui Cui
    Yuanze Zhou
    Yuan Gao
    Lijun Liu
    Science China Earth Sciences, 2025, 68 (3) : 720 - 729
  • [24] Genetic population structure of the fairy shrimp Branchinecta coloradensis (Anostraca) in the Rocky Mountains of Colorado
    Bohonak, AJ
    CANADIAN JOURNAL OF ZOOLOGY-REVUE CANADIENNE DE ZOOLOGIE, 1998, 76 (11): : 2049 - 2057
  • [25] AN OBSERVATIONAL STUDY OF LEE WAVES IN COLORADO ROCKY MOUNTAINS
    LILLY, DK
    VERGEINE.I
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 1967, 48 (11) : 833 - +
  • [26] MYRIOSCLEROTINIA SNOW SCALD OF TURF IN THE COLORADO ROCKY MOUNTAINS
    BROWN, WM
    SAUNDERS, L
    PEROTTI, L
    RASMUSSENDYKES, C
    WALKER, CB
    PHYTOPATHOLOGY, 1984, 74 (09) : 1136 - 1136
  • [27] Simulations of extreme precipitation events in the Colorado Rocky mountains
    Cotton, WR
    McAnelly, RL
    Ashby, CT
    10TH CONFERENCE ON MOUNTAIN METEOROLOGY, 2002, : 292 - 294
  • [28] Cadmium toxicity among wildlife in the Colorado Rocky Mountains
    James R. Larison
    Gene E. Likens
    John W. Fitzpatrick
    J. G. Crock
    Nature, 2000, 406 : 181 - 183
  • [29] Wood dynamics in headwater streams of the Colorado Rocky Mountains
    Wohl, Ellen
    Goode, Jaime R.
    WATER RESOURCES RESEARCH, 2008, 44 (09)
  • [30] OCCURRENCE OF GRASSHOPPERS AS ACCIDENTALS IN ROCKY MOUNTAINS OF NORTHERN COLORADO
    ALEXANDER, G
    ECOLOGY, 1964, 45 (01) : 77 - &