Preparation of TiO2 nanoparticles by sparking technique for enhancing photovoltaic performance of dye-sensitized solar cells

被引:7
|
作者
Wiranwetchayan, Orawan [1 ]
Promnopas, Wonchai [1 ]
Choopun, Supab [1 ,2 ]
Singjai, Pisith [1 ,2 ]
Thongtem, Somchai [1 ,2 ]
机构
[1] Chiang Mai Univ, Dept Phys & Mat Sci, Fac Sci, Chiang Mai 50200, Thailand
[2] Chiang Mai Univ, Mat Sci Res Ctr, Fac Sci, Chiang Mai 50200, Thailand
关键词
Double-layered photoanode; Dye-sensitized solar cell; TiO2; Sparking technique; LIGHT-SCATTERING LAYER; HIGH-EFFICIENCY; PHOTOCATALYTIC ACTIVITY; HOLLOW MICROSPHERES; ANATASE TIO2; ZNO; FILMS; SNO2; TRANSPORT; SPHERES;
D O I
10.1007/s11164-017-2881-z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The double-layer photoanodes fabricated from TiO2 nanoparticles (np-TiO2) and TiO2 powder (P25) for dye-sensitized solar cells (DSSCs) are reported. The np-TiO2 was deposited on FTO substrates by a sparking technique. The PT1 and PT2 DSSCs were composed of FTO/P25/np-TiO2/N719/electrolyte/Pt and FTO/np-TiO2/P25/N719/electrolyte/Pt, respectively. The Nyquist plot and equivalent circuit of impedance of the DSSCs are also explained and discussed. In this research, the PT1 DSSC with a 1 h sparking period has the highest efficiency of 3.62, 50.21% higher than that of the reference. The enhancement is explained by the increase of adsorption of dye molecules that lead to a remarkable improvement in short-circuit photocurrent (J(sc)). The pore size distribution with increasing the film thickness played a role in the penetration of the electrolyte, dye molecules and effective surface area. Moreover, a decrease in the interfacial resistance was detected in the P25/np-TiO2 double-layered photoanode, leading to fast charge transport and decreased charge recombination in DSSCs.
引用
收藏
页码:4339 / 4352
页数:14
相关论文
共 50 条
  • [11] Enhancing the photovoltaic performances of dye-sensitized solar-cells by modifying the TiO2 electrode-sensitized dye interface
    Lee, Rong-Ho
    Huang, Yu-Wei
    THIN SOLID FILMS, 2009, 517 (20) : 5903 - 5908
  • [12] Improved performance of dye-sensitized solar cells by Cr doped TiO2 nanoparticles
    Gayathri, V
    Peter, I. John
    Rajamanickam, N.
    Ramachandran, K.
    MATERIALS TODAY-PROCEEDINGS, 2021, 35 : 23 - 26
  • [13] Performance Improvement of Dye-Sensitized Solar Cells with Pressed TiO2 Nanoparticles Layer
    Wu, Tian-Chiuan
    Huang, Wei-Ming
    Meen, Teen-Hang
    Tsai, Jenn-Kai
    COATINGS, 2023, 13 (05)
  • [14] Enhancing efficiency of dye-sensitized solar cells by combining use of TiO2 nanotubes and nanoparticles
    Li, X. D.
    Zhang, D. W.
    Chen, S.
    Wang, Z. A.
    Sun, Z.
    Yin, X. J.
    Huang, S. M.
    MATERIALS CHEMISTRY AND PHYSICS, 2010, 124 (01) : 179 - 183
  • [15] Preparation and photovoltaic properties of layered TiO2/carbon nanotube/TiO2 photoanodes for dye-sensitized solar cells
    Barberio, M.
    Grosso, D. R.
    Imbrogno, A.
    Xu, E.
    SUPERLATTICES AND MICROSTRUCTURES, 2016, 91 : 158 - 164
  • [16] Preparation of anatase TiO2 nanotubes and their dye-sensitized solar cells
    Zhang Yuan
    Zhao Ying
    Cai Ning
    Xiong Shao-Zhen
    ACTA PHYSICA SINICA, 2008, 57 (09) : 5806 - 5809
  • [17] Solvothermal synthesis of TiO2 nanorods to enhance photovoltaic performance of dye-sensitized solar cells
    Kathirvel, Sasipriya
    Su, Chaochin
    Shiao, Yung-Jen
    Lin, Ya-Fen
    Chen, Bo-Ren
    Li, Wen-Ren
    SOLAR ENERGY, 2016, 132 : 310 - 320
  • [18] The Effect of Drying and Thickness of TiO2 Electrodes on the Photovoltaic Performance of Dye-Sensitized Solar Cells
    Sedghi, Arman
    Miankushki, Hoda Nourmohammadi
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2015, 10 (04): : 3354 - 3362
  • [19] The Preparation of Composite TiO2 Electrodes for Dye-sensitized Solar Cells
    Su, Chao-Chin
    Hung, Wei-Cheng
    Lin, Chin-Jung
    Chien, Shu-Hua
    JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2010, 57 (5B) : 1131 - 1135
  • [20] Preparation of anatase TiO2 nanotubes and their dye-sensitized solar cells
    Zhang, Yuan
    Zhao, Ying
    Cai, Ning
    Xiong, Shao-Zhen
    Wuli Xuebao/Acta Physica Sinica, 2008, 57 (09): : 5806 - 5809