Maximum Likelihood Identification of a Continuous-Time Oscillator Utilizing Sampled Data

被引:6
|
作者
Gonzalez, Karen [1 ]
Coronel, Maria [1 ,2 ]
Carvajal, Rodrigo [1 ]
Escarate, Pedro [3 ]
Aguero, Juan C. [1 ,4 ]
机构
[1] Univ Tecn Federico Santa Maria USM, Elect Engn Dept, Valparaiso, Chile
[2] Univ Los Andes, Elect Engn Dept, Merida, Venezuela
[3] Large Binocular Telescope Observ, Tucson, AZ USA
[4] Univ Newcastle, Sch Elect Engn & Comp Sci, Callaghan, NSW, Australia
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 15期
关键词
Maximum Likelihood Methods; Continuous Time System Estimation; Time Series; DATA MODELS; SYSTEMS; ZEROS;
D O I
10.1016/j.ifacol.2018.09.199
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we analyze the likelihood function corresponding to a continuous-time oscillator utilizing regular sampling. We analyze the equivalent sampled-data model for two cases i) instantaneous sampling and ii) integrated sampling. We illustrate the behavior of the log-likelihood function via numerical examples showing that it presents several local maxima. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:712 / 717
页数:6
相关论文
共 50 条
  • [31] Separable Identification of Continuous-Time Systems Having Multiple Unknown Time Delays from Sampled Data
    Ghoul, Y.
    Taarit, Ibn K.
    Ksouri, M.
    2016 4TH INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING & INFORMATION TECHNOLOGY (CEIT), 2016,
  • [32] Robust identification of continuous-time models with arbitrary time-delay from irregularly sampled data
    Chen, Fengwei
    Garnier, Hugues
    Gilson, Marion
    JOURNAL OF PROCESS CONTROL, 2015, 25 : 19 - 27
  • [33] Maximum Likelihood Estimation of Continuous-time Diffusion Models for Exchange Rates
    Choi, Seungmoon
    Lee, Jaebum
    EAST ASIAN ECONOMIC REVIEW, 2020, 24 (01) : 61 - 87
  • [34] Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes
    Durham, GB
    Gallant, AR
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2002, 20 (03) : 297 - 316
  • [35] Obtaining Multivariable Continuous-Time Models From Sampled Data
    Romano, Rodrigo A.
    Pait, Felipe
    dos Santos, P. Lopes
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 140 - 145
  • [36] REPRESENTATION OF SAMPLED-DATA SIGNALS AS FUNCTIONS OF CONTINUOUS-TIME
    TSIVIDIS, Y
    PROCEEDINGS OF THE IEEE, 1983, 71 (01) : 181 - 183
  • [37] Continuous-time deadbeat control for sampled-data systems
    Katoh, H
    Funahashi, Y
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (10) : 1478 - 1481
  • [38] SAMPLED-DATA AND CONTINUOUS-TIME SQUARERS IN MOS TECHNOLOGY
    KHOURY, JM
    NAGARAJ, K
    TROSINO, JM
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1990, 25 (04) : 1032 - 1035
  • [39] Identification of continuous-time systems utilising Kautz basis functions from sampled-data
    Coronel, Maria
    Carvajal, Rodrigo
    Aguero, Juan C.
    IFAC PAPERSONLINE, 2020, 53 (02): : 536 - 541
  • [40] Continuous-Time Input-Output Linear Dynamic System Identification using Sampled Data
    Figwer, Jaroslaw
    2015 20TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2015, : 712 - 717