Maximum Likelihood Identification of a Continuous-Time Oscillator Utilizing Sampled Data

被引:6
|
作者
Gonzalez, Karen [1 ]
Coronel, Maria [1 ,2 ]
Carvajal, Rodrigo [1 ]
Escarate, Pedro [3 ]
Aguero, Juan C. [1 ,4 ]
机构
[1] Univ Tecn Federico Santa Maria USM, Elect Engn Dept, Valparaiso, Chile
[2] Univ Los Andes, Elect Engn Dept, Merida, Venezuela
[3] Large Binocular Telescope Observ, Tucson, AZ USA
[4] Univ Newcastle, Sch Elect Engn & Comp Sci, Callaghan, NSW, Australia
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 15期
关键词
Maximum Likelihood Methods; Continuous Time System Estimation; Time Series; DATA MODELS; SYSTEMS; ZEROS;
D O I
10.1016/j.ifacol.2018.09.199
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we analyze the likelihood function corresponding to a continuous-time oscillator utilizing regular sampling. We analyze the equivalent sampled-data model for two cases i) instantaneous sampling and ii) integrated sampling. We illustrate the behavior of the log-likelihood function via numerical examples showing that it presents several local maxima. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:712 / 717
页数:6
相关论文
共 50 条
  • [1] Identification of continuous-time MIMO systems via sampled data
    Matsubara, Mitsuru
    Usui, Yusuke
    Sugimoto, Sueo
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2006, 2 (05): : 1119 - 1136
  • [2] IDENTIFICATION OF CONTINUOUS-TIME MULTIVARIABLE SYSTEMS FROM SAMPLED DATA
    SINHA, NK
    LASTMAN, GJ
    INTERNATIONAL JOURNAL OF CONTROL, 1982, 35 (01) : 117 - 126
  • [3] Continuous-time Hammerstein system identification from sampled data
    Greblicki, Wlodzimierz
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (07) : 1195 - 1200
  • [4] Exact identification of continuous-time systems from sampled data
    Marelli, Damian
    Fu, Minyue
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PTS 1-3, PROCEEDINGS, 2007, : 757 - +
  • [5] On the Unique Identification of Continuous-Time Autoregressive Models From Sampled Data
    Kirshner, Hagai
    Unser, Michael
    Ward, John Paul
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (06) : 1361 - 1376
  • [6] A Continuous-Time Linear System Identification Method for Slowly Sampled Data
    Marelli, Damian
    Fu, Minyue
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (05) : 2521 - 2533
  • [7] Identification of continuous-time AR processes from unevenly sampled data
    Larsson, EK
    Söderström, T
    AUTOMATICA, 2002, 38 (04) : 709 - 718
  • [8] Identification of continuous-time ARX models from irregularly sampled data
    Larsson, Erik K.
    Mossberg, Magnus
    Soderstrom, Torsten
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (03) : 417 - 427
  • [9] On Maximum Likelihood Estimation of Continuous-Time Oscillators Modelled as Continuous-Time Autoregressive System
    Coronel, M.
    Gonzalez, K.
    Escarate, P.
    Carvajal, R.
    Aguero, J. C.
    IEEE LATIN AMERICA TRANSACTIONS, 2019, 17 (07) : 1214 - 1219
  • [10] CONTINUOUS-TIME OBSERVERS WITH DELAYED SAMPLED DATA
    SALAMA, A
    GOURISHANKAR, V
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1978, 23 (06) : 1107 - 1109