Methods and Tools for Bayesian Variable Selection and Model Averaging in Normal Linear Regression

被引:32
|
作者
Forte, Anabel [1 ]
Garcia-Donato, Gonzalo [2 ,3 ]
Steel, Mark [4 ]
机构
[1] Univ Valencia, Dept Stat & Operat Res, Valencia, Spain
[2] Univ Castilla La Mancha, Dept Econ & Finance, Ciudad Real, Spain
[3] Univ Castilla La Mancha, Inst Desarrollo Reg, Ciudad Real, Spain
[4] Univ Warwick, Dept Stat, Coventry, W Midlands, England
关键词
G-PRIORS; GROWTH; INFERENCE; MIXTURES;
D O I
10.1111/insr.12249
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we briefly review the main methodological aspects concerned with the application of the Bayesian approach to model choice and model averaging in the context of variable selection in regression models. This includes prior elicitation, summaries of the posterior distribution and computational strategies. We then examine and compare various publicly available R-packages, summarizing and explaining the differences between packages and giving recommendations for applied users. We find that all packages reviewed (can) lead to very similar results, but there are potentially important differences in flexibility and efficiency of the packages.
引用
收藏
页码:237 / 258
页数:22
相关论文
共 50 条
  • [41] DETERMINANTAL POINT PROCESS PRIORS FOR BAYESIAN VARIABLE SELECTION IN LINEAR REGRESSION
    Kojima, Mutsuki
    Komaki, Fumiyasu
    STATISTICA SINICA, 2016, 26 (01) : 97 - 117
  • [42] Bayesian Variable Selection in Linear Regression in One Pass for Large Datasets
    Ordonez, Carlos
    Garcia-Alvarado, Carlos
    Baladandayuthapani, Veerabhadaran
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2014, 9 (01)
  • [43] Objective Bayesian group variable selection for linear model
    Kang, Sang Gil
    Lee, Woo Dong
    Kim, Yongku
    COMPUTATIONAL STATISTICS, 2022, 37 (03) : 1287 - 1310
  • [44] Sparse linear regression in unions of bases via Bayesian variable selection
    Fevotte, Cedric
    Godsill, Simon J.
    IEEE SIGNAL PROCESSING LETTERS, 2006, 13 (07) : 441 - 444
  • [45] Objective Bayesian group variable selection for linear model
    Sang Gil Kang
    Woo Dong Lee
    Yongku Kim
    Computational Statistics, 2022, 37 : 1287 - 1310
  • [46] Bayesian variable selection for the Cox regression model with missing covariates
    Joseph G. Ibrahim
    Ming-Hui Chen
    Sungduk Kim
    Lifetime Data Analysis, 2008, 14 : 496 - 520
  • [47] Bayesian variable selection for the Cox regression model with missing covariates
    Ibrahim, Joseph G.
    Chen, Ming-Hui
    Kim, Sungduk
    LIFETIME DATA ANALYSIS, 2008, 14 (04) : 496 - 520
  • [48] An RKHS model for variable selection in functional linear regression
    Berrendero, Jose R.
    Bueno-Larraz, Beatriz
    Cuevas, Antonio
    JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 170 : 25 - 45
  • [49] A FAST PROCEDURE OF VARIABLE SELECTION IN LINEAR REGRESSION MODEL
    安柏庆
    Journal of Systems Science & Complexity, 1989, (03) : 266 - 274
  • [50] Variable selection for linear regression in large databases: exact methods
    Joaquín Pacheco
    Silvia Casado
    Applied Intelligence, 2021, 51 : 3736 - 3756