Machine learning and data science in materials design: a themed collection

被引:4
|
作者
Ferguson, Andrew [1 ,2 ,3 ]
Hachmann, Johannes [4 ,5 ,6 ]
机构
[1] Univ Illinois, Dept Mat Sci & Engn, 1304 West Green St, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Chem & Biomol Engn, 600 South Mathews Ave, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL 61801 USA
[4] SUNY Buffalo, Dept Chem & Biol Engn, Buffalo, NY 14260 USA
[5] New York State Ctr Excellence Mat Informat, Buffalo, NY 14203 USA
[6] SUNY Buffalo, Computat & Data Enabled Sci & Engn Grad Program, Buffalo, NY 14260 USA
来源
关键词
D O I
10.1039/c8me90007h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Guest Editors Andrew Ferguson and Johannes Hachmann introduce this themed collection of papers showcasing the latest research leveraging data science and machine learning approaches to guide the understanding and design of hard, soft, and biological materials with tailored properties, function and behaviour.
引用
收藏
页码:429 / 430
页数:2
相关论文
共 50 条
  • [41] Data and Machine Learning in Polymer Science
    Yun-Qi Li
    Ying Jiang
    Li-Quan Wang
    Jian-Feng Li
    Chinese Journal of Polymer Science, 2023, 41 : 1371 - 1376
  • [42] Explainable Machine Learning in the Research of Materials Science
    Wang, Guanjie
    Liu, Shengxian
    Zhou, Jian
    Sun, Zhimei
    ACTA METALLURGICA SINICA, 2024, 60 (10) : 1345 - 1361
  • [43] The Partnership of Citizen Science and Machine Learning: Benefits, Risks, and Future Challenges for Engagement, Data Collection, and Data Quality
    Lotfian, Maryam
    Ingensand, Jens
    Brovelli, Maria Antonia
    SUSTAINABILITY, 2021, 13 (14)
  • [44] Opportunities and Challenges for Machine Learning in Materials Science
    Morgan, Dane
    Jacobs, Ryan
    ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 50, 2020, 2020, 50 : 71 - 103
  • [45] Machine Learning for Materials Science Workshop (MLMS)
    Sardeshmukh, Avadhut
    Reddy, Sreedhar
    Gautham, B. P.
    Agrawal, Ankit
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 4902 - 4903
  • [46] Replicating Machine Learning Experiments in Materials Science
    Pouchard, Line
    Lin, Yuewei
    Van Dam, Hubertus
    PARALLEL COMPUTING: TECHNOLOGY TRENDS, 2020, 36 : 743 - 755
  • [47] Innovative Materials Science via Machine Learning
    Gao, Chaochao
    Min, Xin
    Fang, Minghao
    Tao, Tianyi
    Zheng, Xiaohong
    Liu, Yangai
    Wu, Xiaowen
    Huang, Zhaohui
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (01)
  • [48] ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING IN MATERIALS SCIENCE
    Stuckner, Joshua
    Taheri-Mousavi, S. Mohadeseh
    Saal, James E.
    Advanced Materials and Processes, 2024, 182 (04): : 14 - 20
  • [49] An automatic scientific data collection framework for materials science
    Chen, Ziyi
    Yuan, Yang
    Liang, Sihan
    Wan, Meng
    Li, Kai
    Zhou, Weiqi
    Wang, Yangang
    Wang, Zongguo
    COMPUTATIONAL MATERIALS SCIENCE, 2025, 252
  • [50] Electronic Learning Materials for Machine Design
    Hynek, Martin
    Grach, Miroslav
    Votapek, Petr
    INTERNATIONAL JOURNAL OF ENGINEERING EDUCATION, 2014, 30 (06) : 1549 - 1555