Central configurations in planar n-body problem with equal masses for n=5, 6, 7

被引:0
|
作者
Moczurad, Malgorzata [1 ]
Zgliczynski, Piotr [1 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, Ul Prof Stanislawa Lojasiewicza 6, PL-30348 Krakow, Poland
来源
关键词
Central configurations; Symmetries; Interval arithmetic; Krawczyk operator; FINITENESS;
D O I
10.1007/s10569-019-9920-6
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We give a computer-assisted proof of the full listing of central configuration for n-body problem for Newtonian potential on the plane for n = 5, 6, 7 with equal masses. We show all these central configurations have a reflective symmetry with respect to some line. For n = 8, 9, 10, we establish the existence of central configurations without any reflectional symmetry.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Topological bifurcations of spatial central configurations in the N-body problem
    Marta Kowalczyk
    Celestial Mechanics and Dynamical Astronomy, 2016, 124 : 201 - 214
  • [22] Central configurations and homographic solutions for the quasihomogeneous N-body problem
    Paraschiv, Victor
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (12)
  • [23] Morse Theory and Central Configurations in the Spatial N-body Problem
    John Conrad Merkel
    Journal of Dynamics and Differential Equations, 2008, 20 : 653 - 668
  • [24] Topological bifurcations of spatial central configurations in the N-body problem
    Kowalczyk, Marta
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2016, 124 (02): : 201 - 214
  • [25] Morse Theory and central configurations in the spatial N-body problem
    Merkel, John Conrad
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2008, 20 (03) : 653 - 668
  • [26] Permanent configurations in the n-body problem
    Holtom, Carl
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1943, 54 (1-3) : 520 - 543
  • [27] On the central configurations in the spatial 5-body problem with four equal masses
    Martha Alvarez-Ramírez
    Montserrat Corbera
    Jaume Llibre
    Celestial Mechanics and Dynamical Astronomy, 2016, 124 : 433 - 456
  • [28] Linear stability of the elliptic relative equilibrium with (1+n)-gon central configurations in planar n-body problem
    Hu, Xijun
    Long, Yiming
    Ou, Yuwei
    NONLINEARITY, 2020, 33 (03) : 1016 - 1045
  • [29] On the central configurations in the spatial 5-body problem with four equal masses
    Alvarez-Ramirez, Martha
    Corbera, Montserrat
    Llibre, Jaume
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2016, 124 (04): : 433 - 456
  • [30] CENTRAL CONFIGURATIONS OF THE PLANAR 1+N BODY PROBLEM
    CASASAYAS, J
    LLIBRE, J
    NUNES, A
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1994, 60 (02): : 273 - 288