Positive solutions for semilinear elliptic systems with sign-changing potentials

被引:0
|
作者
Zeddini, Noureddine [1 ]
Ben Dkhil, Adel [2 ]
机构
[1] King Abdulaziz Univ, Dept Math, Coll Arts & Sci, Rabigh Campus Box 344, Rabigh 21911, Saudi Arabia
[2] Univ Tunis El Manar, Fac Sci Tunis, Dept Math, Campus Univ, Tunis 2092, Tunisia
关键词
Elliptic Systems; Positive Solution; Green potential; Leray-Shauder fixed point theorem; EXISTENCE;
D O I
10.1515/auom-2016-0023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of positive solutions of the Dirichlet problem -Delta u = lambda p(x)f(u,v); -Delta v = lambda q(x)g(u,v), in D, and u = v = 0 on partial derivative(infinity) D, where D subset of R-n (n >= 3) is an C-1,C-1-domain with compact boundary and lambda > 0. The potential functions p, q are not necessarily bounded, may change sign and the functions f, g : R-2 -> R are continuous with f(0, 0) > 0, g(0, 0) > 0. By applying the Leray-Schauder fixed point theorem, we establish the existence of positive solutions for lambda sufficiently small.
引用
收藏
页码:383 / 390
页数:8
相关论文
共 50 条