Constructing permutation arrays using partition and extension

被引:3
|
作者
Bereg, Sergey [1 ]
Mojica, Luis Gerardo [1 ]
Morales, Linda [1 ]
Sudborough, Hal [1 ]
机构
[1] Univ Texas Dallas, Dept Comp Sci, Box 830688, Richardson, TX 75083 USA
关键词
Permutation arrays; Partition and extension; Kronecker product; Coset method; POWERLINE COMMUNICATION;
D O I
10.1007/s10623-019-00684-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give new lower bounds for M(n, d), for various positive integers n and d with n > d, where M(n, d) is the largest number of permutations on n symbols with pairwise Hamming distance at least d. Large sets of permutations on n symbols with pairwiseHamming distance d are needed for constructing error correcting permutation codes, which have been proposed for power-line communications. Our technique, partition and extension, is universally applicable to constructing such sets for all n and all d, d < n. We describe three new techniques, sequential partition and extension, parallel partition and extension, anda modifiedKronecker product operation, which extend the applicability of partition and extension in different ways. We describe how partition and extension gives improved lower bounds for M(n, n - 1) using mutually orthogonal Latin squares (MOLS). We present efficient algorithms for computing new partitions: an iterative greedy algorithm and an algorithm based on integer linear programming. These algorithms yield partitions of positions (or symbols) used as input to our partition and extension techniques. We report many new lower bounds for M(n, d) found using these techniques for n up to 600.
引用
收藏
页码:311 / 339
页数:29
相关论文
共 50 条
  • [21] Constructions for retransmission permutation arrays
    Jeffrey H. Dinitz
    Maura B. Paterson
    Douglas R. Stinson
    Ruizhong Wei
    Designs, Codes and Cryptography, 2012, 65 : 325 - 351
  • [22] BOUNDS FOR EQUIDISTANT PERMUTATION ARRAYS
    FIORI, C
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1987, 1A (02): : 229 - 237
  • [23] Multiple contractions of permutation arrays
    Amarra, Carmen
    Briones, Dom Vito A.
    Loquias, Manuel Joseph C.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2023, 58 (03) : 695 - 715
  • [24] Constructing permutation representations for matrix groups
    Cooperman, G
    Finkelstein, L
    Tselman, M
    York, B
    JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) : 471 - 488
  • [25] Constructions for retransmission permutation arrays
    Dinitz, Jeffrey H.
    Paterson, Maura B.
    Stinson, Douglas R.
    Wei, Ruizhong
    DESIGNS CODES AND CRYPTOGRAPHY, 2012, 65 (03) : 325 - 351
  • [26] A Permutation Representation of Covering Arrays
    Dougherty, Ryan E.
    Jiang, Xi
    2021 IEEE/ACM INTERNATIONAL WORKSHOP ON GENETIC IMPROVEMENT (GI 2021), 2021, : 41 - 42
  • [27] Two constructions of permutation arrays
    Fu, FW
    Klove, T
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (05) : 881 - 883
  • [28] EXTENSION OF THE PARTITION SIEVE
    BRESSOUD, DM
    JOURNAL OF NUMBER THEORY, 1980, 12 (01) : 87 - 100
  • [29] Constructing error-correcting binary codes using transitive permutation groups
    Laaksonen, Antti
    Ostergard, Patric R. J.
    DISCRETE APPLIED MATHEMATICS, 2017, 233 : 65 - 70
  • [30] Constructing arrays of proteins
    Sinclair, John C.
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2013, 17 (06) : 946 - 951