Slot-die-coating operability windows for polymer electrolyte membrane fuel cell cathode catalyst layers

被引:34
|
作者
Creel, Erin B. [1 ]
Tjiptowidjojo, Kristianto [2 ]
Lee, J. Alex [3 ]
Livingston, Kelsey M. [1 ]
Schunk, P. Randall [2 ,4 ]
Bell, Nelson S. [4 ]
Serov, Alexey [1 ]
Wood, David L., III [1 ]
机构
[1] Oak Ridge Natl Lab, Elctrificat & Energy Infrastruct Div, Oak Ridge, TN 37831 USA
[2] Univ New Mexico, Ctr Microengineered Mat, Albuquerque, NM 87131 USA
[3] St Gobain Res North Amer, Northborough, MA 01532 USA
[4] Sandia Natiodal Labs, Albuquerque, NM 87185 USA
关键词
Proton exchange membrane fuel cell; Gas diffusion electrode; Slot-die coating; Cathode catalyst layer; Roll-to-roll manufacturing; LOW-FLOW LIMIT; BATTERY ELECTRODES; PERFORMANCE;
D O I
10.1016/j.jcis.2021.11.047
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Roll-to-roll (R2R) slot-die coating of polymer electrolyte membrane fuel cell (PEMFC) catalyst layers represents a scalable deposition method for producing 10-20 m(2).min(-1) of catalyst-coated gas diffusion layers (GDLs). This high-throughput production technique will help lower the cost of PEMFC catalyst layers. The uniformity of the wet layer applied by slot die deposition is affected by process parameters such as substrate speed, vacuum pressure applied at the upstream meniscus, gap between the slot die lips and substrate, ink rheology, and other ink and substrate properties. The set of conditions for producing a defect-free coating with a dilute ink typically requires little to no upstream vacuum pressure, so suitable operating conditions can be found easily through trial and error and operator intuition. However, the higher viscosity of more concentrated inks dramatically shifts the range of settings that result in a homogeneous coating to higher vacuum levels, which are harder to find through hit or miss. A predictive model showing the range of operable conditions decreases material wastage inherent in experimentally searching for suitable parameters. In this study, the defect-free coating parameter window is explored experimentally and theoretically for two concentrations of PEFC cathode inks. Both a full capillary hydrodynamic model and a computationally cheaper viscocapillary model successfully predict the experimentally determined coating window within the experimental and model uncertainty limits for inks with 5.3 wt% and 12.0 wt% solids ink while maintaining the 0.1 mg(Pt).cm.Pt-2 areal loading target. This paper demonstrates a viable pathway for meeting the $30/kW(net) ultimate cost target of the United States Department of Energy (U.S. DOE) Hydrogen Fuel Cells Technologies Office (HFTO). The concentrated ink lowers the thermal energy and capital expenditure (CapEx) budget of the coating process by decreasing the amount of time, energy, and floorspace required for drying the coating. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:474 / 485
页数:12
相关论文
共 50 条
  • [11] Partially Perfluorinated Hydrocarbon Ionomer for Cathode Catalyst Layer of Polymer Electrolyte Membrane Fuel Cell
    Oh, Keun-Hwan
    Kim, Wan-Keun
    Choo, Min-Ju
    Lee, Jae-Suk
    Park, Jung-Ki
    Kim, Hee-Tak
    ELECTROCHIMICA ACTA, 2014, 125 : 314 - 319
  • [12] Depositing Catalyst Layers in Polymer Electrolyte Membrane Fuel Cells: A Review
    Strong, Austin
    Thornberry, Courtney
    Beattie, Shane
    Chen, Rongrong
    Coles, Stuart R.
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2015, 12 (06):
  • [13] Composite-supported Pt catalyst and electrosprayed cathode catalyst layer for polymer electrolyte membrane fuel cell
    Alvar, Esmaeil Navaei
    Zhou, Biao
    Eichhorn, Stephan Holger
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2017, 41 (11) : 1626 - 1641
  • [14] Optimization of polymer electrolyte fuel cell cathode catalyst layers via direct numerical simulation modeling
    Wang, Guoqing
    Mukherjee, Partha P.
    Wang, Chao-Yang
    ELECTROCHIMICA ACTA, 2007, 52 (22) : 6367 - 6377
  • [15] Analysis of a cathode catalyst layer model for a polymer electrolyte fuel cell
    Berg, P.
    Novruzi, A.
    Promislow, K.
    CHEMICAL ENGINEERING SCIENCE, 2006, 61 (13) : 4316 - 4331
  • [16] A direct methanol fuel cell without the use of a polymer electrolyte membrane or precious metal cathode catalyst
    Yang, Xiaodong
    Liu, Yongning
    Fang, Yuan
    Wang, Li
    Li, Sai
    Wei, Xiaozhu
    JOURNAL OF POWER SOURCES, 2013, 234 : 272 - 276
  • [17] Investigation of macromolecule-metal complexes as cathode catalyst in polymer electrolyte membrane fuel cell system
    Yuasa, M.
    Kondo, T.
    Mori, D.
    Arikawa, S.
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2011, 22 (08) : 1235 - 1241
  • [18] Numerical assessment of dependence of polymer electrolyte membrane fuel cell performance on cathode catalyst layer parameters
    Obut, Salih
    Alper, Erdogan
    JOURNAL OF POWER SOURCES, 2011, 196 (04) : 1920 - 1931
  • [19] Effects of operating conditions on durability of polymer electrolyte membrane fuel cell Pt cathode catalyst layer
    Ohyagi, Shinsuke
    Matsuda, Toshihiko
    Iseki, Yohei
    Sasaki, Tatsuyoshi
    Kaito, Chihiro
    JOURNAL OF POWER SOURCES, 2011, 196 (08) : 3743 - 3749
  • [20] Electrochemical Impedance Study and Performance of PdNi Nanoparticles as Cathode Catalyst in a Polymer Electrolyte Membrane Fuel Cell
    Ramos-Sanchez, G.
    Santana-Salinas, A.
    Vazquez-Huerta, G.
    Solorza-Feria, O.
    JOURNAL OF NEW MATERIALS FOR ELECTROCHEMICAL SYSTEMS, 2010, 13 (03) : 213 - 217