InGaAs/InAsSb strained layer superlattices for mid-wave infrared detectors

被引:25
|
作者
Ariyawansa, Gamini [1 ]
Reyner, Charles J. [1 ]
Steenbergen, Elizabeth H. [1 ]
Duran, Joshua M. [1 ]
Reding, Joshua D. [1 ]
Scheihing, John E. [1 ]
Bourassa, Henry R. [2 ]
Liang, Baolai L. [3 ]
Huffaker, Diana L. [3 ]
机构
[1] US Air Force, Res Lab, Wright Patterson AFB, OH 45433 USA
[2] Univ Dayton, Dept Phys, Dayton, OH 45469 USA
[3] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
关键词
D O I
10.1063/1.4939904
中图分类号
O59 [应用物理学];
学科分类号
摘要
Investigation of growth and properties of InGaAs/InAsSb strained layer superlattices, identified as ternary strained layer superlattices (ternary SLSs), is reported. The material space for the antimony-based SLS detector development is expanded beyond InAs/InAsSb and InAs/(In) GaSb by incorporating Ga into InAs. It was found that this not only provides support for strain compensation but also enhances the infrared (IR) absorption properties. A unique InGaAs/InAsSb SLS exists when the conduction band of InGaAs aligns with that of InAsSb. The bandgap of this specific InGaAs/InAsSb SLS can then be tuned by adjusting the thickness of both constituents. Due to the enhanced electron-hole wavefunction overlap, a significant increase in the absorption coefficient was theoretically predicted for ternary SLS as compared to current state-of-the-art InAs/InAsSb SLS structures, and an approximately 30%-35% increase in the absorption coefficient was experimentally observed. All the samples examined in this work were designed to have the same bandgap of approximately 0.240 eV (5.6 mu m) at 150 K. (C) 2016 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Short-period InAsSb-based strained layer superlattices for high quantum efficiency long-wave infrared detectors
    Liu, Jinghe
    Donetski, Dmitri
    Kucharczyk, Kevin
    Zhao, Jingze
    Kipshidze, Gela
    Belenky, Gregory
    Svensson, Stefan P.
    APPLIED PHYSICS LETTERS, 2022, 120 (14)
  • [22] Electroluminescence and photoluminescence of type-II InAs/InAsSb strained-layer superlattices in the mid-infrared
    Keen, J. A.
    Repiso, E.
    Lu, Q.
    Kesaria, M.
    Marshall, A. R. J.
    Krier, A.
    INFRARED PHYSICS & TECHNOLOGY, 2018, 93 : 375 - 380
  • [23] Performance limits of the mid-wave InAsSb/AlAsSb nBn HOT infrared detector
    Martyniuk, P.
    Rogalski, A.
    OPTICAL AND QUANTUM ELECTRONICS, 2014, 46 (04) : 581 - 591
  • [24] Performance limits of the mid-wave InAsSb/AlAsSb nBn HOT infrared detector
    P. Martyniuk
    A. Rogalski
    Optical and Quantum Electronics, 2014, 46 : 581 - 591
  • [25] Room temperature mid-wave infrared guided mode resonance InAsSb photodetectors
    Mansfield, N.C.
    Tischenko, Y.
    Bergthold, M.
    Purkait, S.
    Raju, A.
    Kamboj, A.
    Podolskiy, V.A.
    Wasserman, D.
    Applied Physics Letters, 2024, 125 (17)
  • [26] Studies of Dark Current Reduction in InAsSb Mid-Wave Infrared HOT Detectors through Two Step Passivation Technique
    Michalczewski, K.
    Ivaldi, F.
    Kubiszyn, L.
    Benyahia, D.
    Boguski, J.
    Keblowski, A.
    Martyniuk, P.
    Piotrowski, J.
    Rogalski, A.
    ACTA PHYSICA POLONICA A, 2017, 132 (02) : 325 - 328
  • [27] HOT mid-wave HgCdTe nBn and pBp infrared detectors
    Martyniuk, P.
    OPTICAL AND QUANTUM ELECTRONICS, 2015, 47 (06) : 1311 - 1318
  • [28] The growth of InAsSb/InAsP strained-layer superlattices for use in infrared emitters
    Biefeld, RM
    Allerman, AA
    Kurtz, SR
    Burkhart, JH
    JOURNAL OF ELECTRONIC MATERIALS, 1997, 26 (10) : 1225 - 1230
  • [29] The growth of InAsSb/InAsP strained-layer superlattices for use in infrared emitters
    R. M. Biefeld
    A. A. Allerman
    S. R. Kurtz
    J. H. Burkhart
    Journal of Electronic Materials, 1997, 26 : 1225 - 1230
  • [30] Simulation on the saturation properties of HgCdTe mid-wave infrared detectors
    Li Xiang-Yang
    Sang Mao-Sheng
    Xu Guo-Qing
    Qiao Hui
    Chu Kai-Hui
    Yang Xiao-yang
    Yang Peng-Ling
    Wang Da-Hui
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2023, 42 (02) : 143 - 148