Constitutive parameters identification for elastoplastic materials in finite deformation

被引:2
|
作者
Salah, HBH
Khalfallah, A
Znaidi, A
Dogui, A
Sidoroff, F
机构
[1] Ecole Natl Ingn Monastir, Lab Genie Mecan, Monastir 5019, Tunisia
[2] Ecole Cent Lyon, Lab Triobol & Dynam Syst, F-69131 Ecully, France
来源
JOURNAL DE PHYSIQUE IV | 2003年 / 105卷
关键词
D O I
10.1051/jp4:20030165
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this contribution, inverse identification methods of constitutive laws for elastoplastic behaviour are compared. These proposed inverse algorithms are composed on a finite element calculation combined with an optimisation procedure. They are applied to identify material anisotropic coefficients using a set up of easy performed tests. The used experimental data are the plane tensile test and the off axes tensile tests. The data correspond to various virtual elastoplastic orthotropic materials where quadratic or non quadratic criteria with or without associated normality are considered. Three identification methods are compared to find anisotropic parameters. Particular attention is devoted to the impact of the hypothesis on identified parameters.
引用
下载
收藏
页码:3 / 10
页数:8
相关论文
共 50 条
  • [21] An anisotropic elastoplastic constitutive formulation generalised for orthotropic materials
    Nor, M. K. Mohd
    Ma'at, N.
    Ho, C. S.
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2018, 30 (04) : 825 - 860
  • [22] An anisotropic elastoplastic constitutive formulation generalised for orthotropic materials
    M. K. Mohd Nor
    N. Ma’at
    C. S. Ho
    Continuum Mechanics and Thermodynamics, 2018, 30 : 825 - 860
  • [23] Integration Algorithms for Elastoplastic Constitutive Laws in Large Deformation Problems
    Dabounou, Jaouad
    JOURNAL OF ENGINEERING MECHANICS, 2016, 142 (09)
  • [24] Comparative Study of Elastoplastic Constitutive Models for Deformation of Metallic Glasses
    Zhao, Ming
    Li, Mo
    METALS, 2012, 2 (04) : 488 - 507
  • [25] Nonlinear viscoelastic constitutive model for finite deformation rubber-like materials
    An, Qunli
    Wei, Yintao
    Yang, Tingqing
    Yingyong Lixue Xuebao/Chinese Journal of Applied Mechanics, 2001, 18 (04):
  • [26] Constitutive modeling of neo-Hookean materials with spherical voids in finite deformation
    Chen, Yang
    Guo, Wantao
    Yang, Pingping
    Zhao, Junhua
    Guo, Zaoyang
    Dong, Leiting
    Zhong, Zheng
    EXTREME MECHANICS LETTERS, 2018, 24 : 47 - 57
  • [27] ELASTOVISCOPLASTIC CONSTITUTIVE-EQUATIONS FOR ROCK-TYPE MATERIALS (FINITE DEFORMATION)
    CLEJATIGOIU, S
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1991, 29 (12) : 1531 - 1544
  • [28] The finite deformation of nonlinear composite materials .1. Instantaneous constitutive relations
    Ponte Castaneda, P
    Zaidman, M
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1996, 33 (09) : 1271 - 1286
  • [29] Incremental constitutive models for elastoplastic materials undergoing finite deformations by using a four-dimensional formalism
    Wang, Mingchuan
    Panicaud, Benoit
    Rouhaud, Emmanuelle
    Kerner, Richard
    Roos, Arjen
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2016, 106 : 199 - 219
  • [30] Three-dimensional, finite deformation, viscoplastic constitutive models for polymeric materials
    Bardenhagen, SG
    Stout, MG
    Gray, GT
    MECHANICS OF MATERIALS, 1997, 25 (04) : 235 - 253