Some distributional properties of the continuous wavelet transform of random processes

被引:9
|
作者
Averkamp, R [1 ]
Houdre, C
机构
[1] Univ Freiburg, Inst Math Stochastik, D-79104 Freiburg, Germany
[2] Georgia Inst Technol, Sch Math, SE Appl Anal Ctr, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Sch Math, Ctr Appl Probabil, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
fractional Brownian fields; random fields; random processes; wavelet transform;
D O I
10.1109/18.669179
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Without finite moment conditions, some properties of random processes, such as stationarity and self-similarity, are characterized iia corresponding properties of their wavelet transform. Anyone of these distributional properties of the wavelet transform characterizes the corresponding property of the increments of the random process, of order equal to the order of regularity of the analyzing wavelet. Extensions of these results to random fields are then indicated.
引用
收藏
页码:1111 / 1124
页数:14
相关论文
共 50 条
  • [41] Continuous Wavelet Transform Involving Linear Canonical Transform
    Prasad, Akhilesh
    Ansari, Z. A.
    [J]. NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2019, 42 (04): : 337 - 344
  • [42] Wavelet analysis for random processes
    Li, ZM
    Wang, Q
    Wu, YF
    [J]. MODERN PHYSICS LETTERS A, 2001, 16 (09) : 583 - 588
  • [43] On distributional finite continuous Radon transform in certain spaces
    Gupta, Nitu
    Gorty, V. R. Lakshmi
    [J]. AIMS MATHEMATICS, 2021, 6 (01): : 378 - 389
  • [44] On the distributional properties of GARCH processes
    Pawlak, M
    Schmid, W
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2001, 22 (03) : 339 - 352
  • [45] The continuous wavelet transform in Clifford analysis
    Brackx, F
    Sommen, F
    [J]. CLIFFORD ANALYSIS AND ITS APPLICATIONS, 2001, 25 : 9 - 26
  • [46] On Local Fractional Continuous Wavelet Transform
    Yang, Xiao-Jun
    Baleanu, Dumitru
    Srivastava, H. M.
    Tenreiro Machado, J. A.
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [47] Optical implementation of the continuous wavelet transform
    Shabtay, G
    Mendlovic, D
    Zalevsky, Z
    [J]. APPLIED OPTICS, 1998, 37 (14) : 2964 - 2966
  • [48] Requirement of applying continuous wavelet transform
    [J]. Diangong Jishu Xuebao, 5 (57-60):
  • [49] A four dimensional continuous wavelet transform
    Ghandehari, Mahya
    Syzdykova, Aizhan
    Taylor, Keith F.
    [J]. COMMUTATIVE AND NONCOMMUTATIVE HARMONIC ANALYSIS AND APPLICATIONS, 2013, 603 : 123 - +
  • [50] Entries in the continuous wavelet transform table
    DeWitte, JT
    Szu, HH
    [J]. WAVELET APPLICATIONS III, 1996, 2762 : 144 - 150