Traveling wave solution of Korteweg-de Vries equation using He's homotopy perturbation method

被引:0
|
作者
Ozis, Turgut [1 ]
Yildirim, Ahmet [1 ]
机构
[1] Ege Univ, Dept Math, Fac Sci, TR-35100 Izmir, Turkey
关键词
homotopy perturbation method; modified Lindstedt-Poincare method; KdV equations;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
He's Homotopy Perturbation Method combined with modified Lindstedt-Poincare method is applied to the search for traveling wave solutions of Korteweg-de Vries (KdV) equation. The work emphasizes the power of the method that can be used in problems of identical nonlinearity.
引用
收藏
页码:239 / 242
页数:4
相关论文
共 50 条
  • [21] A numerical solution of the Korteweg-de Vries equation by pseudospectral method using Darvishi's preconditionings
    Darvishi, M. T.
    Kheybari, S.
    Khani, F.
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (01) : 98 - 105
  • [22] Stability of a traveling-wave solution to the Cauchy problem for the Korteweg-de Vries-Burgers equation
    Kazeykina, A. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2010, 50 (04) : 690 - 710
  • [23] Stability of a traveling-wave solution to the Cauchy problem for the Korteweg-de Vries-Burgers equation
    A. V. Kazeykina
    Computational Mathematics and Mathematical Physics, 2010, 50 : 690 - 710
  • [24] Homotopy Analysis of Korteweg-de Vries Equation with Time Delay
    Raees, A.
    Xu, H.
    SIXTH INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS (ICNM-VI), 2013, : 229 - 233
  • [25] KORTEWEG-DE VRIES EQUATION
    SHABAT, AB
    DOKLADY AKADEMII NAUK SSSR, 1973, 211 (06): : 1310 - 1313
  • [26] Analytical solution of the Korteweg-de Vries equation and microtubule equation using the first integral method
    Akram, Ghazala
    Mahak, Nadia
    OPTICAL AND QUANTUM ELECTRONICS, 2018, 50 (03)
  • [27] KORTEWEG-DE VRIES EQUATION
    TSUTSUMI, M
    PROCEEDINGS OF THE JAPAN ACADEMY, 1975, 51 (06): : 399 - 401
  • [28] On exact traveling-wave solutions for local fractional Korteweg-de Vries equation
    Yang, Xiao-Jun
    Tenreiro Machado, J. A.
    Baleanu, Dumitru
    Cattani, Carlo
    CHAOS, 2016, 26 (08)
  • [29] THE REDUCTIVE PERTURBATION METHOD AND THE KORTEWEG-DE VRIES HIERARCHY
    KRAENKEL, RA
    PEREIRA, JG
    MANNA, MA
    ACTA APPLICANDAE MATHEMATICAE, 1995, 39 (1-3) : 389 - 403
  • [30] An Improved Perturbation Method to Study Korteweg-de Vries-Burgers Equation
    Zephania, C. F. Sagar
    Harisankar, P. C.
    Sil, Tapas
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2022, 91 (02)