On a cardinality-constrained transportation problem with market choice

被引:4
|
作者
Walter, Matthias [1 ]
Damci-Kurt, Pelin [2 ]
Dey, Santanu S. [3 ]
Kuecuekyavuz, Simge [2 ]
机构
[1] Univ Magdeburg, Inst Math Optimierung, D-39106 Magdeburg, Germany
[2] Ohio State Univ, Dept Integrated Syst Engn, Columbus, OH 43210 USA
[3] Georgia Inst Technol, Sch Ind & Syst Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Transportation problem with market choice; Cardinality constraint; Integral polytope;
D O I
10.1016/j.orl.2015.12.001
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
It is well-known that the intersection of the matching polytope with a cardinality constraint is integral (Schrijver, 2003) [8]. In this note, we prove a similar result for the polytope corresponding to the transportation problem with market choice (TPMC) (introduced in Damci-Kurt et al. (2015)) when the demands are in the set {1, 2}. This result generalizes the result regarding the matching polytope. The result in this note implies that some special classes of minimum weight perfect matching problem with a cardinality constraint on a subset of edges can be solved in polynomial time. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:170 / 173
页数:4
相关论文
共 50 条
  • [41] A strong sequential optimality condition for cardinality-constrained optimization problems
    Xue, Menglong
    Pang, Liping
    [J]. NUMERICAL ALGORITHMS, 2023, 92 (03) : 1875 - 1904
  • [42] Global aspects of the continuous reformulation for cardinality-constrained optimization problems
    Laemmel, S.
    Shikhman, V.
    [J]. OPTIMIZATION, 2024, 73 (10) : 3185 - 3208
  • [43] Logistic Regression Confined by Cardinality-Constrained Sample and Feature Selection
    Adeli, Ehsan
    Li, Xiaorui
    Kwon, Dongjin
    Zhang, Yong
    Pohl, Kilian M.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (07) : 1713 - 1728
  • [44] Projected gradient descent method for cardinality-constrained portfolio optimization
    Li, Xiao-Peng
    Shi, Zhang-Lei
    Leung, Chi-Sing
    So, Hing Cheung
    [J]. Journal of the Franklin Institute, 2024, 361 (18)
  • [45] Convergent Inexact Penalty Decomposition Methods for Cardinality-Constrained Problems
    Matteo Lapucci
    Tommaso Levato
    Marco Sciandrone
    [J]. Journal of Optimization Theory and Applications, 2021, 188 : 473 - 496
  • [46] Restricted Robinson Constraint Qualification and Optimality for Cardinality-Constrained Cone Programming
    Lili Pan
    Ziyan Luo
    Naihua Xiu
    [J]. Journal of Optimization Theory and Applications, 2017, 175 : 104 - 118
  • [47] Restricted Robinson Constraint Qualification and Optimality for Cardinality-Constrained Cone Programming
    Pan, Lili
    Luo, Ziyan
    Xiu, Naihua
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 175 (01) : 104 - 118
  • [48] On Inputs Achieving the Cardinality-Constrained Capacity on the Real Gaussian Noise Channel
    Tuninetti, Daniela
    [J]. 2018 52ND ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2018,
  • [49] An Artificial Bee Colony Algorithm for the Cardinality-Constrained Portfolio Optimization Problems
    Chen, Angela H. L.
    Liang, Yun-Chia
    Liu, Chia-Chien
    [J]. 2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [50] A penalty decomposition approach for multi-objective cardinality-constrained optimization problems
    Lapucci, Matteo
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2022, 37 (06): : 2157 - 2189