On a cardinality-constrained transportation problem with market choice

被引:4
|
作者
Walter, Matthias [1 ]
Damci-Kurt, Pelin [2 ]
Dey, Santanu S. [3 ]
Kuecuekyavuz, Simge [2 ]
机构
[1] Univ Magdeburg, Inst Math Optimierung, D-39106 Magdeburg, Germany
[2] Ohio State Univ, Dept Integrated Syst Engn, Columbus, OH 43210 USA
[3] Georgia Inst Technol, Sch Ind & Syst Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Transportation problem with market choice; Cardinality constraint; Integral polytope;
D O I
10.1016/j.orl.2015.12.001
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
It is well-known that the intersection of the matching polytope with a cardinality constraint is integral (Schrijver, 2003) [8]. In this note, we prove a similar result for the polytope corresponding to the transportation problem with market choice (TPMC) (introduced in Damci-Kurt et al. (2015)) when the demands are in the set {1, 2}. This result generalizes the result regarding the matching polytope. The result in this note implies that some special classes of minimum weight perfect matching problem with a cardinality constraint on a subset of edges can be solved in polynomial time. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:170 / 173
页数:4
相关论文
共 50 条
  • [1] A polynomial case of the cardinality-constrained quadratic optimization problem
    Jianjun Gao
    Duan Li
    [J]. Journal of Global Optimization, 2013, 56 : 1441 - 1455
  • [2] A polynomial case of the cardinality-constrained quadratic optimization problem
    Gao, Jianjun
    Li, Duan
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2013, 56 (04) : 1441 - 1455
  • [3] The cardinality-constrained shortest path problem in 2-graphs
    Dahl, G
    Realfsen, B
    [J]. NETWORKS, 2000, 36 (01) : 1 - 8
  • [4] Cardinality-Constrained Texture Filtering
    Manson, Josiah
    Schaefer, Scott
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2013, 32 (04):
  • [5] An efficient optimization approach for a cardinality-constrained index tracking problem
    Xu, Fengmin
    Lu, Zhaosong
    Xu, Zongben
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2016, 31 (02): : 258 - 271
  • [6] A robust cardinality-constrained model to address the machine loading problem
    Lugaresi, Giovanni
    Lanzarone, Ettore
    Frigerio, Nicla
    Matta, Andrea
    [J]. ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2020, 62
  • [7] A Cardinality-Constrained Robust Approach for the Ambulance Location and Dispatching Problem
    Nicoletta, Vittorio
    Lanzarone, Ettore
    Belanger, Valerie
    Ruiz, Angel
    [J]. HEALTH CARE SYSTEMS ENGINEERING, 2017, 210 : 99 - 109
  • [8] Cardinality-constrained risk parity portfolios
    Anis, Hassan T.
    Kwon, Roy H.
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2022, 302 (01) : 392 - 402
  • [9] Algorithm for cardinality-constrained quadratic optimization
    Bertsimas, Dimitris
    Shioda, Romy
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2009, 43 (01) : 1 - 22
  • [10] A cardinality-constrained robust model for the assignment problem in Home Care services
    Carello, Giuliana
    Lanzarone, Ettore
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2014, 236 (02) : 748 - 762