Severity Classification of Diabetic Retinopathy Using an Ensemble Learning Algorithm through Analyzing Retinal Images

被引:63
|
作者
Sikder, Niloy [1 ]
Masud, Mehedi [2 ]
Bairagi, Anupam Kumar [1 ]
Arif, Abu Shamim Mohammad [1 ]
Nahid, Abdullah-Al [3 ]
Alhumyani, Hesham A. [4 ]
机构
[1] Khulna Univ, Comp Sci & Engn Discipline, Khulna 9208, Bangladesh
[2] Taif Univ, Coll Comp & Informat Technol, Dept Comp Sci, POB 11099, At Taif 21944, Saudi Arabia
[3] Khulna Univ, Elect & Commun Engn Discipline, Khulna 9208, Bangladesh
[4] Taif Univ, Coll Comp & Informat Technol, Dept Comp Engn, POB 11099, At Taif 21944, Saudi Arabia
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 04期
关键词
diabetic retinopathy detection; medical image analysis; image histogram; gray-level co-occurrence matrix; genetic algorithm; ensemble learning;
D O I
10.3390/sym13040670
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Diabetic Retinopathy (DR) refers to the damages endured by the retina as an effect of diabetes. DR has become a severe health concern worldwide, as the number of diabetes patients is soaring uncountably. Periodic eye examination allows doctors to detect DR in patients at an early stage to initiate proper treatments. Advancements in artificial intelligence and camera technology have allowed us to automate the diagnosis of DR, which can benefit millions of patients indeed. This paper inscribes a novel method for DR diagnosis based on the gray-level intensity and texture features extracted from fundus images using a decision tree-based ensemble learning technique. This study primarily works with the Asia Pacific Tele-Ophthalmology Society 2019 Blindness Detection (APTOS 2019 BD) dataset. We undertook several steps to curate its contents to make them more suitable for machine learning applications. Our approach incorporates several image processing techniques, two feature extraction techniques, and one feature selection technique, which results in a classification accuracy of 94.20% (margin of error: +/- 0.32%) and an F-measure of 93.51% (margin of error: +/- 0.5%). Several other parameters regarding the proposed method's performance have been presented to manifest its robustness and reliability. Details on each employed technique have been included to make the provided results reproducible. This method can be a valuable tool for mass retinal screening to detect DR, thus drastically reducing the rate of vision loss attributed to it.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] A SEQUENTIAL LEARNING METHOD FOR DETECTION AND CLASSIFICATION OF EXUDATES IN RETINAL IMAGES TO ASSESS DIABETIC RETINOPATHY
    Ponnibala, M.
    Vijayachitra, S.
    JOURNAL OF BIOLOGICAL SYSTEMS, 2014, 22 (03) : 413 - 428
  • [22] Screening diabetic retinopathy through color retinal images
    Li, Qin
    Jin, Xue-Min
    Gao, Quan-xue
    You, Jane
    Bhattacharya, Prabir
    MEDICAL BIOMETRICS, PROCEEDINGS, 2007, 4901 : 176 - +
  • [23] An automated diabetic retinopathy of severity grade classification using transfer learning and fine-tuning for fundus images
    Chavan, Sachin
    Choubey, Nitin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (24) : 36859 - 36884
  • [24] An automated diabetic retinopathy of severity grade classification using transfer learning and fine-tuning for fundus images
    Sachin Chavan
    Nitin Choubey
    Multimedia Tools and Applications, 2023, 82 : 36859 - 36884
  • [25] Detection and classification of red lesions from retinal images for diabetic retinopathy detection using deep learning models
    P Saranya
    R Pranati
    Sneha Shruti Patro
    Multimedia Tools and Applications, 2023, 82 : 39327 - 39347
  • [26] Deep Learning for Detection and Severity Classification of Diabetic Retinopathy
    Jain, Anuj
    Jalui, Arnav
    Jasani, Jahanvi
    Lahoti, Yash
    Karani, Ruhina
    PROCEEDINGS OF 2019 1ST INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION AND COMMUNICATION TECHNOLOGY (ICIICT 2019), 2019,
  • [27] Detection and classification of red lesions from retinal images for diabetic retinopathy detection using deep learning models
    Saranya, P.
    Pranati, R.
    Patro, Sneha Shruti
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (25) : 39327 - 39347
  • [28] Detection of five severity levels of diabetic retinopathy using ensemble deep learning model
    Yatharth Kale
    Sanjeev Sharma
    Multimedia Tools and Applications, 2023, 82 : 19005 - 19020
  • [29] Automated Grading of Diabetic Retinopathy in Retinal Fundus Images using Deep Learning
    Hathwar, Sagar B.
    Srinivasa, Gowri
    PROCEEDINGS OF THE 2019 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING APPLICATIONS (IEEE ICSIPA 2019), 2019, : 73 - 77
  • [30] Detection of five severity levels of diabetic retinopathy using ensemble deep learning model
    Kale, Yatharth
    Sharma, Sanjeev
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (12) : 19005 - 19020