Solution-Processed 8-Hydroquinolatolithium as Effective Cathode Interlayer for High-Performance Polymer Solar Cells

被引:41
|
作者
Liu, Wenqing [1 ]
Liang, Tao [1 ]
Chen, Qi [2 ]
Yu, Zhikai [1 ]
Zhang, Yingying [1 ]
Liu, Yujing [1 ]
Fu, Weifei [1 ]
Tang, Feng [2 ]
Chen, Liwei [2 ]
Chen, Hongzheng [1 ]
机构
[1] Zhejiang Univ, Dept Polymer Sci & Engn, State Key Lab Silicon Mat, MOE Key Lab Macromol Synth & Functionalizat, Hangzhou 310027, Zhejiang, Peoples R China
[2] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, I Lab, Suzhou 215123, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
PSC; cathode interlayer; Liq; PCE; work function; stability; ELECTRON INJECTION LAYER; POWER CONVERSION EFFICIENCY; OPEN-CIRCUIT VOLTAGE; BUFFER LAYER; FILL FACTOR; ENHANCEMENT; COMPLEXES; DEVICES; FABRICATION; ZNO;
D O I
10.1021/acsami.6b00327
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Solution-processed 8-hydroxyquinolinatolithium (s-Liq) was successfully applied as an efficient cathode interlayer in bulk heterojunction polymer solar cells (PSCs), giving rise to enhancement in device performance. The ultraviolet photoelectron spectra results revealed that the presence of s-Liq could lower work function of Al cathode, allowing for the ohmic contacts with the fullerene acceptor for better electron extraction and also a larger work function difference between the two electrodes, which leads to an increase in open-circuit voltage (V-oc). Scanning Kelvin probe microscopy study on the surface potential of active layers suggested that an interfacial dipole was formed in the s-Liq interlayer between the active layer and the Al cathode, which enhanced the intrinsic built-in potential in the device for better charge transportation and extraction. Consequently, the V-oc, fill factor, and current density of the device can be improved by the introduction of s-Liq interlayer, leading to a power conversion efficiency (PCE) improvement. With PTB7 (or PTB7-Th) as the donor and PC71BM as the acceptor, the s-Liq-based PSC devices exhibited a PCE of 8.37% (or 9.04%), much higher than those of devices with the evaporated Liq (7.62%) or commonly used PFN (8.14%) as the cathode interlayer. Moreover, the s-Liq-based devices showed good stability, maintaining 75% (in N-2) and 45% (in air) of the initial PCE after 7 days, respectively. These results suggest the great potential of s-Liq as cathode interlayer material for high-performance solar cells application.
引用
收藏
页码:9254 / 9261
页数:8
相关论文
共 50 条
  • [11] Toward Solution-Processed High-Performance Polymer Solar Cells: from Material Design to Device Engineering
    Zhang, Kai
    Hu, Zhicheng
    Sun, Chen
    Wu, Zhihong
    Huang, Fei
    Cao, Yong
    CHEMISTRY OF MATERIALS, 2017, 29 (01) : 141 - 148
  • [12] High-Performance Polymer Solar Cells with Solution-Processed and Environmentally Friendly CuOx Anode Buffer Layer
    Xu, Qi
    Wang, Fuzhi
    Tan, Zhan'ao
    Li, Liangjie
    Li, Shusheng
    Hou, Xuliang
    Sun, Gang
    Tu, Xiaohe
    Hou, Jianhui
    Li, Yongfang
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (21) : 10658 - 10664
  • [13] A solution-processed bathocuproine cathode interfacial layer for high-performance bromine-iodine perovskite solar cells
    Yuan, Da-Xing
    Yuan, Xiao-Dong
    Xu, Qing-Yang
    Xu, Mei-Feng
    Shi, Xiao-Bo
    Wang, Zhao-Kui
    Liao, Liang-Sheng
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (40) : 26653 - 26658
  • [14] Recent Progress of Solution-Processed Thickness-Insensitive Cathode Interlayers for High-Performance Organic Solar Cells
    Cai, Ping
    Song, Can
    Du, Yating
    Wang, Jianbin
    Wang, Jing
    Sun, Lixian
    Gao, Feng
    Xue, Qifan
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [15] SOLUTION-PROCESSED VANADIUM OXIDE INTERLAYER FOR IMPROVING THE PERFORMANCE OF POLYMER/ZNO NANOROD HYBRID SOLAR CELLS
    Huang, Jing-Shun
    Wu, Chung-Hao
    Chou, Chen-Yu
    Liu, Mena-Yueh
    Lin, Wen-Han
    Lin, Yu-Hung
    Lin, Ching-Fuh
    2009 34TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, VOLS 1-3, 2009, : 779 - 781
  • [16] Solution-processed cathode interfacial layer materials for high-efficiency polymer solar cells
    Xiao, Biao
    Wu, Hongbin
    Cao, Yong
    MATERIALS TODAY, 2015, 18 (07) : 385 - 394
  • [17] Solution-processed vanadium oxide as a hole collection layer on an ITO electrode for high-performance polymer solar cells
    Tan, Zhan'ao
    Zhang, Wenqing
    Cui, Chaohua
    Ding, Yuqin
    Qian, Deping
    Xu, Qi
    Li, Liangjie
    Li, Shusheng
    Li, Yongfang
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (42) : 14589 - 14595
  • [18] Improved electron extraction by a ZnO nanoparticle interlayer for solution-processed polymer solar cells
    Zhang, Xuning
    Yang, Shuo
    Bi, Shiqing
    Kumaresan, Anbu
    Zhou, Jiyu
    Seifter, Jason
    Mi, Hongyu
    Xu, Yun
    Zhang, Yuan
    Zhou, Huiqiong
    RSC ADVANCES, 2017, 7 (20): : 12400 - 12406
  • [19] Non-Basic High-Performance Molecules for Solution-Processed Organic Solar Cells
    van der Poll, Thomas S.
    Love, John A.
    Thuc-Quyen Nguyen
    Bazan, Guillermo C.
    ADVANCED MATERIALS, 2012, 24 (27) : 3646 - 3649
  • [20] Solution-processed carbon dots based cathode interlayer for high efficiency inverted organic solar cells with improved photostability
    Tian, Xia
    Li, Yuting
    Cui, Mengqi
    Wang, Yuying
    Hao, Xiujuan
    Zhang, Yangyang
    Li, Na
    Chen, Yan
    Gao, Xingsen
    Rong, Qikun
    Nian, Li
    ORGANIC ELECTRONICS, 2022, 108