Two-Dimensional Cold Electron Transport for Steep-Slope Transistors

被引:32
|
作者
Liu, Maomao [1 ]
Jaiswal, Hemendra Nath [1 ]
Shahi, Simran [1 ]
Wei, Sichen [2 ]
Fu, Yu [2 ]
Chang, Chaoran [2 ]
Chakravarty, Anindita [1 ]
Liu, Xiaochi [3 ]
Yang, Cheng [4 ]
Liu, Yanpeng [5 ]
Lee, Young Hee [6 ]
Perebeinos, Vasili [1 ]
Yao, Fei [2 ]
Li, Huamin [1 ]
机构
[1] Univ Buffalo State Univ New York, Dept Elect Engn, Buffalo, NY 14260 USA
[2] Univ Buffalo State Univ New York, Dept Mat Design & Innovat, Buffalo, NY 14260 USA
[3] Cent South Univ, Sch Phys & Elect, Changsha 410083, Peoples R China
[4] Shandong Normal Univ, Sch Phys & Elect, Jinan 250014, Peoples R China
[5] Nanjing Univ Aeronaut & Astronaut, Inst Nanosci, Nanjing 210016, Peoples R China
[6] Inst Basic Sci, Ctr Integrated Nanostruct Phys, Suwon 16419, South Korea
基金
美国国家科学基金会;
关键词
graphene; MoS2; Dirac-source; cold electrons; steep-slope transistors; electronic refrigeration; FIELD-EFFECT TRANSISTORS; NEGATIVE CAPACITANCE; GRAPHENE;
D O I
10.1021/acsnano.1c01503
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Room-temperature Fermi-Dirac electron thermal excitation in conventional three-dimensional (3D) or two-dimensional (2D) semiconductors generates hot electrons with a relatively long thermal tail in energy distribution. These hot electrons set a fundamental obstacle known as the "Boltzmann tyranny" that limits the subthreshold swing (SS) and therefore the minimum power consumption of 3D and 2D field-effect transistors (FETs). Here, we investigated a graphene (Gr)-enabled cold electron injection where the Gr acts as the Dirac source to provide the cold electrons with a localized electron density distribution and a short thermal tail at room temperature. These cold electrons correspond to an electronic refrigeration effect with an effective electron temperature of similar to 145 K in the monolayer MoS2, which enables the transport factor lowering and thus the steep-slope switching (across for three decades with a minimum SS of 29 mV/decade at room temperature) for a monolayer MoS2 FET. Especially, a record-high sub-60-mV/decade current density (over 1 mu A/mu m) can be achieved compared to conventional steep-slope technologies such as tunneling FETs or negative capacitance FETs using 2D or 3D channel materials. Our work demonstrates the potential of a 2D Dirac-source cold electron transistor as a steep-slope transistor concept for future energy-efficient nanoelectronics.
引用
收藏
页码:5762 / 5772
页数:11
相关论文
共 50 条
  • [31] Explaining Steep-Slope Switching in Carbon Nanotube Dirac-Source Field-Effect Transistors
    Wu, Peng
    Appenzeller, Joerg
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (09) : 5270 - 5275
  • [32] A New Opportunity for 2D van der Waals Heterostructures: Making Steep-Slope Transistors
    Lyu, Juan
    Pei, Jing
    Guo, Yuzheng
    Gong, Jian
    Li, Huanglong
    ADVANCED MATERIALS, 2020, 32 (02)
  • [33] Energy filtering in silicon nanowires and nanosheets using a geometric superlattice and its use for steep-slope transistors
    Beckers, Arnout (arnout.beckers@epfl.ch), 1600, American Institute of Physics Inc. (124):
  • [34] A Steep-Slope MoS2-Nanoribbon MOSFET Based on an Intrinsic Cold-Contact Effect
    Logoteta, Demetrio
    Pala, Marco G.
    Choukroun, Jean
    Dollfus, Philippe
    Iannaccone, Giuseppe
    IEEE ELECTRON DEVICE LETTERS, 2019, 40 (09) : 1550 - 1553
  • [35] Demonstration of Confined Electron Gas and Steep-Slope Behavior in Delta-Doped GaAs-AlGaAs Core-Shell Nanowire Transistors
    Morkoetter, S.
    Jeon, N.
    Rudolph, D.
    Loitsch, B.
    Spirkoska, D.
    Hoffmann, E.
    Doeblinger, M.
    Matich, S.
    Finley, J. J.
    Lauhon, L. J.
    Abstreiter, G.
    Koblmueller, G.
    NANO LETTERS, 2015, 15 (05) : 3295 - 3302
  • [36] Two-dimensional mapping of the electrostatic potential in transistors by electron holography
    Rau, WD
    Schwander, P
    Baumann, FH
    Höppner, W
    Ourmazd, A
    PHYSICAL REVIEW LETTERS, 1999, 82 (12) : 2614 - 2617
  • [37] 2D Steep-Slope Tunnel Field-Effect Transistors Tuned by van der Waals Ferroelectrics
    Chen, Xinrui
    Jiang, Tiantian
    Wang, Hanbin
    Wang, Yang
    Zhang, Miao
    Cui, Yi
    Wang, Yong
    Li, Nannan
    Du, Xinchuan
    Yan, Chaoyi
    Liu, Yuqing
    Wang, Xianfu
    ADVANCED ELECTRONIC MATERIALS, 2024,
  • [38] Electron transport in a two-dimensional electron gas with magnetic barriers
    Vancura, T
    Ihn, T
    Broderick, S
    Ensslin, K
    Wegscheider, W
    Bichler, M
    PHYSICAL REVIEW B, 2000, 62 (08): : 5074 - 5078
  • [39] Steep-slope field-effect transistors with AlGaN/GaN HEMT and oxide-based threshold switching device
    Huang, Xuanqi
    Fang, Runchen
    Yang, Chen
    Fu, Kai
    Fu, Houqiang
    Chen, Hong
    Yang, Tsung-Han
    Zhou, Jingan
    Montes, Jossue
    Kozicki, Michael
    Barnaby, Hugh
    Zhang, Baoshun
    Zhao, Yuji
    NANOTECHNOLOGY, 2019, 30 (21)
  • [40] Identifying atomically thin isolated-band channels for intrinsic steep-slope transistors by high-throughput study
    Qu, Hengze
    Zhang, Shengli
    Cao, Jiang
    Wu, Zhenhua
    Chai, Yang
    Li, Weisheng
    Li, Lain-Jong
    Ren, Wencai
    Wang, Xinran
    Zeng, Haibo
    SCIENCE BULLETIN, 2024, 69 (10) : 1427 - 1436