Maximum Likelihood Estimation of the Cox-Ingersoll-Ross Model Using Particle Filters

被引:19
|
作者
De Rossi, Giuliano [1 ]
机构
[1] UBS Investment Res, London EC2M 2PP, England
基金
英国经济与社会研究理事会;
关键词
Term structure of interest rates; Sequential Monte Carlo method; Importance sampling; TERM-STRUCTURE; INFORMATION; VOLATILITY; CURVE;
D O I
10.1007/s10614-010-9208-0
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper shows how to build in a computationally efficient way a maximum simulated likelihood procedure to estimate the Cox-Ingersoll-Ross model from multivariate time series. The advantage of this estimator is that it takes into account the exact likelihood function while avoiding the huge computational burden associated with MCMC methods and without the ad hoc assumption that certain bond yields are measured without error. The proposed methodology is implemented and tested on simulated data. For realistic parameter values the estimator seems to have good small sample properties, compared to the popular quasi maximum likelihood approach, even using moderate simulation sizes. The effect of simulation errors does not seem to undermine the estimation procedure.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [1] Maximum Likelihood Estimation of the Cox–Ingersoll–Ross Model Using Particle Filters
    Giuliano De Rossi
    [J]. Computational Economics, 2010, 36 : 1 - 16
  • [2] Estimation in the Cox-Ingersoll-Ross model
    Overbeck, L
    Ryden, T
    [J]. ECONOMETRIC THEORY, 1997, 13 (03) : 430 - 461
  • [3] Gaussian estimation for discretely observed Cox-Ingersoll-Ross model
    Wei, Chao
    Shu, Huisheng
    Liu, Yurong
    [J]. INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2016, 45 (05) : 561 - 574
  • [4] Change detection in the Cox-Ingersoll-Ross model
    Pap, Gyula
    Szabo, Tamas T.
    [J]. STATISTICS & RISK MODELING, 2016, 33 (1-2) : 21 - 40
  • [5] A stable Cox-Ingersoll-Ross model with restart
    Peng, Jun
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 444 (02) : 1185 - 1194
  • [6] Wiener chaos and the Cox-Ingersoll-Ross model
    Grasselli, MR
    Hurd, TR
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2054): : 459 - 479
  • [7] Embedding the Vasicek model into the Cox-Ingersoll-Ross model
    Sinkala, W.
    Leach, P. G. L.
    O'Hara, J. G.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (02) : 152 - 159
  • [8] Analyticity of the Cox-Ingersoll-Ross semigroup
    Fornaro, S.
    Metafune, G.
    [J]. POSITIVITY, 2020, 24 (04) : 915 - 931
  • [9] Cox-Ingersoll-Ross model for wind speed modeling and forecasting
    Bensoussan, Alain
    Brouste, Alexandre
    [J]. WIND ENERGY, 2016, 19 (07) : 1355 - 1365
  • [10] Asymptotic properties of estimators in a stable Cox-Ingersoll-Ross model
    Li, Zenghu
    Ma, Chunhua
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (08) : 3196 - 3233