interest-rate models;
Wiener chaos;
functional integrals;
squared Gaussian models;
D O I:
10.1098/rspa.2004.1366
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
In this paper we recast the Cox-Ingersoll-Ross (CIR) model of interest rates into the chaotic representation recently introduced by Hughston and Rafailidis. Beginning with the 'squared Gaussian representation' of the CIR model, we find a simple expression for the fundamental random variable X-infinity. By use of techniques from the theory of infinite-dimensional Gaussian integration, we derive an explicit formula for the nth term of the Wiener chaos expansion of the CIR model, for n = 0, 1, 2, .... We then derive a new expression for the price of a zero coupon bond which reveals a connection between Gaussian measures and Ricatti differential equations.
机构:
Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
Li, Zenghu
Ma, Chunhua
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R ChinaBeijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
机构:
Donghua Univ, Sch Informat Sci & Technol, Shanghai, Peoples R ChinaDonghua Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
Wei, Chao
Shu, Huisheng
论文数: 0引用数: 0
h-index: 0
机构:
Donghua Univ, Sch Sci, Shanghai, Peoples R ChinaDonghua Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
Shu, Huisheng
Liu, Yurong
论文数: 0引用数: 0
h-index: 0
机构:
Yangzhou Univ, Dept Math, Yangzhou 225009, Jiangsu, Peoples R China
King Abdulaziz Univ, Fac Engn, Commun Syst & Networks CSN Res Grp, Jeddah 21413, Saudi ArabiaDonghua Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
机构:
Univ Coll Cork, Sch Math Sci, Cork, Ireland
Univ Negeri Padang, Fac Math & Nat Sci, Math Dept, Padang, IndonesiaUniv Coll Cork, Sch Math Sci, Cork, Ireland