Wiener chaos and the Cox-Ingersoll-Ross model

被引:11
|
作者
Grasselli, MR [1 ]
Hurd, TR [1 ]
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
关键词
interest-rate models; Wiener chaos; functional integrals; squared Gaussian models;
D O I
10.1098/rspa.2004.1366
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we recast the Cox-Ingersoll-Ross (CIR) model of interest rates into the chaotic representation recently introduced by Hughston and Rafailidis. Beginning with the 'squared Gaussian representation' of the CIR model, we find a simple expression for the fundamental random variable X-infinity. By use of techniques from the theory of infinite-dimensional Gaussian integration, we derive an explicit formula for the nth term of the Wiener chaos expansion of the CIR model, for n = 0, 1, 2, .... We then derive a new expression for the price of a zero coupon bond which reveals a connection between Gaussian measures and Ricatti differential equations.
引用
收藏
页码:459 / 479
页数:21
相关论文
共 50 条
  • [1] Estimation in the Cox-Ingersoll-Ross model
    Overbeck, L
    Ryden, T
    [J]. ECONOMETRIC THEORY, 1997, 13 (03) : 430 - 461
  • [2] Change detection in the Cox-Ingersoll-Ross model
    Pap, Gyula
    Szabo, Tamas T.
    [J]. STATISTICS & RISK MODELING, 2016, 33 (1-2) : 21 - 40
  • [4] Embedding the Vasicek model into the Cox-Ingersoll-Ross model
    Sinkala, W.
    Leach, P. G. L.
    O'Hara, J. G.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (02) : 152 - 159
  • [5] Analyticity of the Cox-Ingersoll-Ross semigroup
    Fornaro, S.
    Metafune, G.
    [J]. POSITIVITY, 2020, 24 (04) : 915 - 931
  • [6] Cox-Ingersoll-Ross model for wind speed modeling and forecasting
    Bensoussan, Alain
    Brouste, Alexandre
    [J]. WIND ENERGY, 2016, 19 (07) : 1355 - 1365
  • [7] Asymptotic properties of estimators in a stable Cox-Ingersoll-Ross model
    Li, Zenghu
    Ma, Chunhua
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (08) : 3196 - 3233
  • [8] Gaussian estimation for discretely observed Cox-Ingersoll-Ross model
    Wei, Chao
    Shu, Huisheng
    Liu, Yurong
    [J]. INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2016, 45 (05) : 561 - 574
  • [9] UNIFORM APPROXIMATION OF THE COX-INGERSOLL-ROSS PROCESS
    Milstein, Grigori N.
    Schoenmakers, John
    [J]. ADVANCES IN APPLIED PROBABILITY, 2015, 47 (04) : 1132 - 1156
  • [10] The role of adaptivity in a numerical method for the Cox-Ingersoll-Ross model
    Kelly, Conall
    Lord, Gabriel
    Maulana, Heru
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 410