UNIFORM APPROXIMATION OF THE COX-INGERSOLL-ROSS PROCESS

被引:6
|
作者
Milstein, Grigori N. [1 ]
Schoenmakers, John [2 ]
机构
[1] Ural Fed Univ, Lenin Str 51, Ekaterinburg 620083, Russia
[2] Weierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany
关键词
Cox-Ingersoll-Ross process; Doss-Sussmann formalism; Bessel function; confluent hypergeometric equation; ORDINARY DIFFERENTIAL-EQUATIONS;
D O I
10.1017/S0001867800049041
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Doss-Sussmann (DS) approach is used for uniform simulation of the Cox-Ingersoll-Ross (CIR) process. The DS formalism allows us to express trajectories of the CIR process through solutions of some ordinary differential equation (ODE) depending on realizations of a Wiener process involved. By simulating the first-passage times of the increments of the Wiener process to the boundary of an interval and solving the ODE, we uniformly approximate the trajectories of the CIR process. In this respect special attention is payed to simulation of trajectories near 0. From a conceptual point of view the proposed method gives a better quality of approximation (from a pathwise point of view) than standard, even exact, simulation of the stochastic differential equation at some deterministic time grid.
引用
收藏
页码:1132 / 1156
页数:25
相关论文
共 50 条
  • [1] UNIFORM APPROXIMATION OF THE COX-INGERSOLL-ROSS PROCESS VIA EXACT SIMULATION AT RANDOM TIMES
    Milstein, Grigori N.
    Schoenmakers, John
    [J]. ADVANCES IN APPLIED PROBABILITY, 2016, 48 (04) : 1095 - 1116
  • [2] Generalisation of fractional Cox-Ingersoll-Ross process
    Mpanda, Marc Mukendi
    Mukeru, Safari
    Mulaudzi, Mmboniseni
    [J]. RESULTS IN APPLIED MATHEMATICS, 2022, 15
  • [3] An Euler-type method for the strong approximation of the Cox-Ingersoll-Ross process
    Dereich, Steffen
    Neuenkirch, Andreas
    Szpruch, Lukasz
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 468 (2140): : 1105 - 1115
  • [4] The Cox-Ingersoll-Ross process under volatility uncertainty
    Akhtari, Bahar
    Li, Hanwu
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (01)
  • [5] An adaptive splitting method for the Cox-Ingersoll-Ross process
    Kelly, Conall
    Lord, Gabriel J.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2023, 186 : 252 - 273
  • [6] Analyticity of the Cox-Ingersoll-Ross semigroup
    Fornaro, S.
    Metafune, G.
    [J]. POSITIVITY, 2020, 24 (04) : 915 - 931
  • [7] Low-dimensional Cox-Ingersoll-Ross process
    Mishura, Yuliya
    Pilipenko, Andrey
    Yurchenko-Tytarenko, Anton
    [J]. STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2024,
  • [8] LIMIT THEOREMS FOR A COX-INGERSOLL-ROSS PROCESS WITH HAWKES JUMPS
    Zhu, Lingjiong
    [J]. JOURNAL OF APPLIED PROBABILITY, 2014, 51 (03) : 699 - 712
  • [9] Estimation in the Cox-Ingersoll-Ross model
    Overbeck, L
    Ryden, T
    [J]. ECONOMETRIC THEORY, 1997, 13 (03) : 430 - 461
  • [10] Fractional Cox-Ingersoll-Ross process with small Hurst indices
    Mishura, Yuliya
    Yurchenko-Tytarenko, Anton
    [J]. MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2019, 6 (01): : 13 - 39