Lithium-Ion Capacitors and Hybrid Lithium-Ion Capacitors-Evaluation of Electrolyte Additives Under High Temperature Stress

被引:5
|
作者
Boltersdorf, Jonathan [1 ]
Yan, Jin [2 ,3 ]
Delp, Samuel A. [1 ,4 ]
Cao, Ben [2 ,3 ]
Zheng, Jianping P. [5 ]
Jow, T. Richard [1 ]
Read, Jeffrey A. [1 ]
机构
[1] US Army, Res Lab, FCDD, RLS,DC, Adelphi, MD 20783 USA
[2] Gen Capacitor LLC, Tallahassee, FL 32304 USA
[3] INTL INC, Tallahassee, FL 32304 USA
[4] Gen Tech Serv, Adelphi, MD 20783 USA
[5] Florida State Univ, Florida A&M Univ, Dept Elect & Comp Engn, Tallahassee, FL 32310 USA
关键词
hybrid; additives; Li; energy storage; ELECTROCHEMICAL PERFORMANCE; CYCLING PERFORMANCE; CARBON CATHODE; ANODE; BATTERY; ENERGY; CHARGE; POWER; FILM;
D O I
10.1557/adv.2019.294
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lithium-ion capacitors (LICs) and Hybrid LICs (H-LICs) were assembled as three-layered pouch cells in an asymmetric configuration employing Faradaic pre-lithiated hard carbon anodes and non-Faradaic ion adsorption-desorption activated carbon (AC) cathodes for LICs and lithium iron phosphate (LiFePO4-LFP)/AC composite cathodes for H-LICs. The room temperature rate performance was evaluated after the initial LIC and H-LIC cell formation as a function of the electrolyte additives. The capacity retention was measured after charging at high temperature conditions, while the design factor explored was electrolyte additive formulation, with a focus on their stability. The high temperature potential holds simulate electrochemical energy materials under extreme environments and act to accelerate the failure mechanisms associated with cell degradation to determine robust electrolyte/additive combinations.
引用
收藏
页码:2641 / 2649
页数:9
相关论文
共 50 条
  • [21] Enabling Fluorine-Free Lithium-Ion Capacitors and Lithium-Ion Batteries for High-Temperature Applications by the Implementation of Lithium Bis(oxalato)Borate and Ethyl Isopropyl Sulfone as Electrolyte
    Kreth, Fabian Alexander
    Koeps, Lukas
    Leibing, Christian
    Darlami Magar, Sandesh
    Hermesdorf, Marius
    Schutjajew, Konstantin
    Neumann, Christof
    Leistenschneider, Desiree
    Turchanin, Andrey
    Oschatz, Martin
    Gomez Urbano, Juan Luis
    Balducci, Andrea
    ADVANCED ENERGY MATERIALS, 2024, 14 (13)
  • [22] Effects of the Hybrid Composition of Commercial Lithium-Ion Capacitors on Their Floating Aging
    El Ghossein, Nagham
    Sari, Ali
    Venet, Pascal
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2019, 34 (03) : 2292 - 2299
  • [23] Carbon-based materials as anode materials for lithium-ion batteries and lithium-ion capacitors: A review
    Yuan, Shuang
    Lai, Qinghao
    Duan, Xiao
    Wang, Qiang
    JOURNAL OF ENERGY STORAGE, 2023, 61
  • [24] Unlocking the potential of acetates as electroactive additives to electrolytes for lithium-ion and sodium-ion capacitors
    Mackowiak, Adam
    Jezowski, Pawe
    Fic, Krzysztof
    JOURNAL OF POWER SOURCES, 2024, 616
  • [25] A review on electrolyte additives for lithium-ion batteries
    Zhang, Sheng Shui
    JOURNAL OF POWER SOURCES, 2006, 162 (02) : 1379 - 1394
  • [26] Intercalation-pseudocapacitance hybrid anode for high rate and energy lithium-ion capacitors
    Chang Liu
    Ali Khosrozadeh
    Qing-Qing Ren
    Ling-Hui Yan
    Kokswee Goh
    Shi-Han Li
    Jian Liu
    Lei Zhao
    Da-Ming Gu
    Zhen-Bo Wang
    Journal of Energy Chemistry, 2021, 55 (04) : 459 - 467
  • [27] Lithium-Ion Capacitors: A Review of Design and Active Materials
    Lamb, Jacob J.
    Burheim, Odne S.
    ENERGIES, 2021, 14 (04)
  • [28] Design Rationale and Device Configuration of Lithium-Ion Capacitors
    Liang, Jiaxing
    Wang, Da-Wei
    ADVANCED ENERGY MATERIALS, 2022, 12 (25)
  • [29] An Overview on Design Parameters of Practical Lithium-Ion Capacitors
    Jin, Liming
    Yuan, Jianmin
    Shellikeri, Annadanesh
    Naderi, Roya
    Qin, Nan
    Lu, Yanyan
    Fan, Runlin
    Wu, Qiang
    Zheng, Junsheng
    Zhang, Cunman
    Zheng, Jim P.
    BATTERIES & SUPERCAPS, 2021, 4 (05) : 749 - 757
  • [30] Evaluation of phenyl carbonates as electrolyte additives in lithium-ion batteries
    Petibon, R.
    Rotermund, L. M.
    Dahn, J. R.
    JOURNAL OF POWER SOURCES, 2015, 287 : 184 - 195