Alexander invariants of ribbon tangles and planar algebras

被引:3
|
作者
Damiani, Celeste [1 ]
Florens, Vincent [2 ]
机构
[1] Osaka City Univ, Dept Math, Sumiyoshi Ku, Osaka 5588585, Japan
[2] Univ Pau & Pays Adour, Lab Math & Leurs Applicat, CNRS, UMR 5142, Ave Univ,BP 1155, F-64013 Pau, France
关键词
Alexander polynomials; tangles; welded knots; planar algebras; REPRESENTATION; KNOTS;
D O I
10.2969/jmsj/75267526
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Ribbon tangles are proper embeddings of tori and cylinders in the 4-ball B-4, "bounding" 3-manifolds with only ribbon disks as singularities. We construct an Alexander invariant A of ribbon tangles equipped with a representation of the fundamental group of their exterior in a free abelian group G. This invariant induces a functor in a certain category Rib(G) of tangles, which restricts to the exterior powers of Burau-Gassner representation for ribbon braids, that are analogous to usual braids in this context. We define a circuit algebra Cob(G) over the operad of smooth cobordisms, inspired by diagrammatic planar algebras introduced by Jones [Jon99], and prove that the invariant A commutes with the compositions in this algebra. On the other hand, ribbon tangles admit diagrammatic representations, through welded diagrams. We give a simple combinatorial description of A and of the algebra Cob(G), and observe that our construction is a topological incarnation of the Alexander invariant of Archibald [Arc10]. When restricted to diagrams without virtual crossings, A provides a purely local description of the usual Alexander poynomial of links, and extends the construction by Bigelow, Cattabriga and the second author [BCF15].
引用
收藏
页码:1063 / 1084
页数:22
相关论文
共 50 条
  • [31] Hodge decomposition of Alexander invariants
    Anatoly Libgober
    manuscripta mathematica, 2002, 107 : 251 - 269
  • [32] On reciprocality of twisted Alexander invariants
    Hillman, Jonathan A.
    Silver, Daniel S.
    Williams, Susan G.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2010, 10 (02): : 1017 - 1026
  • [33] On the Alexander invariants of hypersurface complements
    Maxim, Laurentiu
    SINGULARITY THEORY, 2007, : 725 - 743
  • [34] Amphicheirality of links and Alexander invariants
    Kadokami Teruhisa
    Kawauchi Akio
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (10) : 2213 - 2227
  • [35] Shadows, ribbon surfaces, and quantum invariants
    Carrega, Alessio
    Martelli, Bruno
    QUANTUM TOPOLOGY, 2017, 8 (02) : 249 - 294
  • [36] Dynamics of twisted Alexander invariants
    Silver, Daniel S.
    Williams, Susan G.
    TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (17) : 2795 - 2811
  • [37] Arc spaces and Alexander invariants
    Guibert, G
    COMMENTARII MATHEMATICI HELVETICI, 2002, 77 (04) : 783 - 820
  • [38] QUANDLE TWISTED ALEXANDER INVARIANTS
    Ishii, Atsushi
    Oshiro, Kanako
    OSAKA JOURNAL OF MATHEMATICS, 2022, 59 (03) : 683 - 702
  • [39] Amphicheirality of links and Alexander invariants
    KADOKAMI Teruhisa
    KAWAUCHI Akio
    Science China(Mathematics), 2011, 54 (10) : 2213 - 2227
  • [40] Alexander invariants for virtual knots
    Boden, Hans U.
    Dies, Emily
    Gaudreau, Anne Isabel
    Gerlings, Adam
    Harper, Eric
    Nicas, Andrew J.
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2015, 24 (03)