Plasmon Excitation and Induced Emission with a Plasmonic Self-Organized Crystal

被引:0
|
作者
Frederich, Hugo [1 ,2 ]
Lethiec, Clotilde [1 ,2 ]
Wen, Fangfang [1 ,2 ]
Laverdant, Julien [3 ,4 ]
Schwob, Catherine [1 ,4 ]
Popescu, Traian
Douillard, Ludovic
Coolen, Laurent [1 ,2 ]
Maitre, Agnes [1 ,2 ]
机构
[1] Univ Paris 06, UMR 7588, INSP, 4 Pl Jussieu, Paris 05, France
[2] CAIRS, INSP, F-11R7588 Paris 05, France
[3] Univ Lyon, Uniyersite5 Lyon & CNRS, LPAICN, F-69622 Villeurbanne, France
[4] IRAMIS, CEA, Serv Phys & Chim Surfaces & Interfaces, F-91191 Gif Sur Yvette, France
关键词
surface plasmons; self-organization; fluorescence; nanocrystals; electron microscopy; FLUORESCENCE; SURFACE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we describe the plasmonic and plasmon-photon coupling properties of nanostructured metallic films obtained by a self-assembly protocol. A gold layer is deposited on top of a self-assembled deposition of silica beads (artificial opal), which thus acts as a template. Atomic-force and scanning-electron microscopies demonstrates a periodic pattern on the metal surface with groove depth (here labelled h) ranging from 55 to 150 nm. By optical gonioreflectometry, the surface plasmon modes of this structure are probed: plasmon creation appears as an absorption dip in the reflection spectra. The plasmon dispersion relation is probed as a function of h and shows, for the smaller values of h, a good agreement with an analytical model for vanishing h. By depositing nanocrystals on the structure and measuring the fluorescence radiation pattern, we demonstrate a method to estimate the plasmon extraction (plasmon-to-photon coupling) efficiency. Finally, we use photo-emission electron microscopy to map the electric field of the plasmonic modes and characterize both propagative surface plasmon and localized ("hot spot") plasmon modes.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Self-organized settlements
    Daffertshofer, A
    Haken, H
    Portugali, J
    ENVIRONMENT AND PLANNING B-PLANNING & DESIGN, 2001, 28 (01): : 89 - 102
  • [42] SELF-ORGANIZED CRITICALITY
    MALINETSKII, GG
    MITIN, NA
    ZHURNAL FIZICHESKOI KHIMII, 1995, 69 (08): : 1513 - 1518
  • [43] Self-organized origami
    Mahadevan, L
    Rica, S
    SCIENCE, 2005, 307 (5716) : 1740 - 1740
  • [44] Self-organized ceramic
    不详
    ADVANCED MATERIALS, 2000, 12 (15) : 1095 - 1095
  • [45] Self-organized ion-beam synthesis of nanowires with broadband plasmonic functionality
    Toma, A.
    Chiappe, D.
    Boragno, C.
    de Mongeot, F. Buatier
    PHYSICAL REVIEW B, 2010, 81 (16):
  • [46] Investigation on the Spectrum of Complex Self-Organized Plasma Photonic Crystal
    Liu Wei-bo
    Dong Li-fang
    Zhao Long-hu
    Wang Yong-jie
    Zhang Xin-pu
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35 (01) : 48 - 51
  • [47] Self-organized periodic photonic structure in a nonchiral liquid crystal
    Ruan, LZ
    Sambles, JR
    Stewart, IW
    PHYSICAL REVIEW LETTERS, 2003, 91 (03) : 1 - 033901
  • [48] Formation of Self-organized Silver Nanocup-Type Structures and Their Plasmonic Absorption
    Y. K. Mishra
    R. Adelung
    G. Kumar
    M. Elbahri
    S. Mohapatra
    R. Singhal
    A. Tripathi
    D. K. Avasthi
    Plasmonics, 2013, 8 : 811 - 815
  • [49] Self-organized growth of ZnO single crystal columns array
    Sun, XM
    Deng, ZX
    Li, YD
    MATERIALS CHEMISTRY AND PHYSICS, 2003, 80 (01) : 366 - 370
  • [50] Self-organized criticality
    Turcotte, DL
    REPORTS ON PROGRESS IN PHYSICS, 1999, 62 (10) : 1377 - 1429