On the rainbow connection number of graphs

被引:0
|
作者
Dror, G. [1 ]
Lev, A. [1 ]
Roditty, Y. [1 ]
Zigdon, R. [1 ]
机构
[1] Acad Coll Tel Aviv Yaffo, Sch Comp Sci, 2 Rabeinu Yeruham St, IL-61083 Tel Aviv, Israel
关键词
rainbow connected coloring;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E), vertical bar V vertical bar = n, be a simple connected graph. An edge-colored graph G is rainbow edge-connected if any two vertices are connected by a path whose edges are colored by distinct colors. The rainbow connection number of a connected graph G, denoted by rc(G), is the smallest number of colors that are needed in order to make G rainbow edge connected. In this paper we obtain tight bounds for rc(G). We use our results to generalize previous results for graphs with delta(G) >= 3.
引用
收藏
页码:51 / 67
页数:17
相关论文
共 50 条
  • [31] On the Locating Rainbow Connection Number of the Comb Product with Complete Graphs or Trees
    Imrona, Mahmud
    Salman, A. N. M.
    Uttunggadewa, Saladin
    Putri, Pritta Etriana
    COMBINATORICS, GRAPH THEORY AND COMPUTING, SEICCGTC 2021, 2024, 448 : 203 - 214
  • [32] Further hardness results on the rainbow vertex-connection number of graphs
    Chen, Lily
    Li, Xueliang
    Lian, Huishu
    THEORETICAL COMPUTER SCIENCE, 2013, 481 : 18 - 23
  • [33] Nordhaus-Gaddum-Type Theorem for Rainbow Connection Number of Graphs
    Chen, Lily
    Li, Xueliang
    Lian, Huishu
    GRAPHS AND COMBINATORICS, 2013, 29 (05) : 1235 - 1247
  • [34] Generalized Rainbow Connection of Graphs
    Zhu, Xiaoyu
    Wei, Meiqin
    Magnant, Colton
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (06) : 3991 - 4002
  • [35] Generalized Rainbow Connection of Graphs
    Xiaoyu Zhu
    Meiqin Wei
    Colton Magnant
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 3991 - 4002
  • [36] Rainbow connection in oriented graphs
    Dorbec, Paul
    Schiermeyer, Ingo
    Sidorowicz, Elzbieta
    Sopena, Eric
    DISCRETE APPLIED MATHEMATICS, 2014, 179 : 69 - 78
  • [37] RAINBOW CONNECTION IN SPARSE GRAPHS
    Kemnitz, Arnfried
    Przybylo, Jakub
    Schiermeyer, Ingo
    Wozniak, Mariusz
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2013, 33 (01) : 181 - 192
  • [38] Rainbow Connection Number and the Number of Blocks
    Xueliang Li
    Sujuan Liu
    Graphs and Combinatorics, 2015, 31 : 141 - 147
  • [39] Rainbow Connection Number and the Number of Blocks
    Li, Xueliang
    Liu, Sujuan
    GRAPHS AND COMBINATORICS, 2015, 31 (01) : 141 - 147
  • [40] (1, 2)-rainbow connection number at most 3 in connected dense graphs
    Doan, Trung Duy
    Duyen, Le Thi
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2023, 11 (02) : 411 - 417