Regressive Class Modelling for Predicting Trajectories of COVID-19 Fatalities Using Statistical and Machine Learning Models

被引:0
|
作者
Chowdhury, Rafiqul I. [1 ]
Hasan, M. Tariqul [2 ]
Sneddon, Gary [3 ]
机构
[1] Univ Prince Edward Isl, Sch Math & Computat Sci, Charlottetown, PE C1A 4P3, Canada
[2] Univ New Brunswick, Dept Math & Stat, Fredericton, NB E3B 5A3, Canada
[3] Mt St Vincent Univ, Dept Math & Stat, Halifax, NS B3M 2J6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
SARS-CoV-2; virus; Repeated measures; Model accuracy; Deep learning techniques; Joint modelling; MARGINAL MODELS; EPIDEMIC; DISEASE;
D O I
10.1007/s40840-022-01287-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The COVID-19 (SARS-CoV-2 virus) pandemic has led to a substantial loss of human life worldwide by providing an unparalleled challenge to the public health system. The economic, psychological, and social disarray generated by the COVID-19 pandemic is devastating. Public health experts and epidemiologists worldwide are struggling to formulate policies on how to control this pandemic as there is no effective vaccine or treatment available which provide long-term immunity against different variants of COVID-19 and to eradicate this virus completely. As the new cases and fatalities are recorded daily or weekly, the responses are likely to be repeated or longitudinally correlated. Thus, studying the impact of available covariates and new cases on deaths from COVID-19 repeatedly would provide significant insights into this pandemic's dynamics. For a better understanding of the dynamics of spread, in this paper, we study the impact of various risk factors on the new cases and deaths over time. To do that, we propose a marginal-conditional based joint modelling approach to predict trajectories, which is crucial to the health policy planners for taking necessary measures. The conditional model is a natural choice to study the underlying property of dependence in consecutive new cases and deaths. Using this model, one can examine the relationship between outcomes and predictors, and it is possible to calculate risks of the sequence of events repeatedly. The advantage of repeated measures is that one can see how individual responses change over time. The predictive accuracy of the proposed model is also compared with various machine learning techniques. The machine learning algorithms used in this paper are extended to accommodate repeated responses. The performance of the proposed model is illustrated using COVID-19 data collected from the Texas Health and Human Services.
引用
收藏
页码:235 / 250
页数:16
相关论文
共 50 条
  • [31] Comparing machine learning algorithms for predicting COVID-19 mortality
    Khadijeh Moulaei
    Mostafa Shanbehzadeh
    Zahra Mohammadi-Taghiabad
    Hadi Kazemi-Arpanahi
    BMC Medical Informatics and Decision Making, 22
  • [32] Predicting the mortality of patients with Covid-19: A machine learning approach
    Emami, Hassan
    Rabiei, Reza
    Sohrabei, Solmaz
    Atashi, Alireza
    HEALTH SCIENCE REPORTS, 2023, 6 (04)
  • [33] A machine learning model for predicting deterioration of COVID-19 inpatients
    Noy, Omer
    Coster, Dan
    Metzger, Maya
    Atar, Itai
    Shenhar-Tsarfaty, Shani
    Berliner, Shlomo
    Rahav, Galia
    Rogowski, Ori
    Shamir, Ron
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [34] Comparing machine learning algorithms for predicting COVID-19 mortality
    Moulaei, Khadijeh
    Shanbehzadeh, Mostafa
    Mohammadi-Taghiabad, Zahra
    Kazemi-Arpanahi, Hadi
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
  • [35] A machine learning model for predicting deterioration of COVID-19 inpatients
    Omer Noy
    Dan Coster
    Maya Metzger
    Itai Atar
    Shani Shenhar-Tsarfaty
    Shlomo Berliner
    Galia Rahav
    Ori Rogowski
    Ron Shamir
    Scientific Reports, 12
  • [36] A comparison of machine learning algorithms in predicting COVID-19 prognostics
    Ustebay, Serpil
    Sarmis, Abdurrahman
    Kaya, Gulsum Kubra
    Sujan, Mark
    INTERNAL AND EMERGENCY MEDICINE, 2023, 18 (01) : 229 - 239
  • [37] Machine Learning Algorithms for Predicting the Spread of Covid-19 in Indonesia
    Arlis, Syafri
    Defit, Sarjon
    TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS, 2021, 10 (02): : 970 - 974
  • [38] A comparison of machine learning algorithms in predicting COVID-19 prognostics
    Serpil Ustebay
    Abdurrahman Sarmis
    Gulsum Kubra Kaya
    Mark Sujan
    Internal and Emergency Medicine, 2023, 18 : 229 - 239
  • [39] Predicting COVID-19 Based on Environmental Factors With Machine Learning
    Abdulkareem, Amjed Basil
    Sani, Nor Samsiah
    Sahran, Shahnorbanun
    Alyessari, Zaid Abdi Alkareem
    Adam, Afzan
    Abd Rahman, Abdul Hadi
    Abdulkarem, Abdulkarem Basil
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 28 (02): : 305 - 320
  • [40] Impact of the COVID-19 pandemic on IBOVESPA: A statistical analysis with machine learning models PROPHET and AUTOARIMA
    Silva, Antonio Victor Alves
    Xavier, Erika Fialho Morais
    Barbosa, Nyedja Fialho Morais
    Xavier Junior, Silvio Fernando Alves
    Jale, Jader da Silva
    SIGMAE, 2024, 13 (02): : 57 - 71