Role of stoichiometric point defect in electric-field-poling lithium niobate

被引:0
|
作者
Bermúdez, V
Huang, L
Hui, D
Field, S
Diéguez, E
机构
[1] Univ Autonoma Madrid, Dpto Fis Mat, E-28049 Madrid, Spain
[2] Gemfire Corp, Palo Alto, CA 94087 USA
来源
关键词
D O I
10.1007/s003390000445
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Non-congruent LiNbO3 crystals has been used to determine the influence of the intrinsic defect density in the ferroelectric domain inversion mechanism. The poling processes have been carried out either at high temperature or at RT throughout the electric-field-poling technique. It is shown that the coercive field of LiNbO3 crystals is strongly influenced by the intrinsic defect density in the crystals. Moreover it is shown that it is possible to realign the ferroelectric domain structure of near-stoichiometric LiNbO3 crystals to prepare periodic poled structures which allows second harmonic generation at shorter wavelengths than with congruent crystals at a fixed wavelength.
引用
收藏
页码:591 / 594
页数:4
相关论文
共 50 条
  • [1] Role of stoichiometric point defect in electric-field-poling lithium niobate
    Bermudez, V.
    Huang, L.
    Hui, D.
    Field, S.
    Dieguez, E.
    [J]. Applied Physics A: Materials Science and Processing, 2000, 70 (05): : 591 - 594
  • [2] Role of stoichiometric point defect in electric-field-poling lithium niobate
    V. Bermúdez
    L. Huang
    D. Hui
    S. Field
    E. Diéguez
    [J]. Applied Physics A, 2000, 70 : 591 - 594
  • [3] Low electric field periodic poling of thick stoichiometric lithium niobate
    Grisard, A
    Lallier, E
    Polgár, K
    Péter, A
    [J]. ELECTRONICS LETTERS, 2000, 36 (12) : 1043 - 1044
  • [4] Non-stoichiometric defect effect on coercive field in lithium niobate crystals
    Ro, JH
    Jeon, OY
    Kim, TH
    Ro, JH
    Cha, MS
    [J]. FERROELECTRICS, 2002, 269 : 231 - 236
  • [5] Interferometric measurement of the internal field of lithium niobate without high-voltage electric field poling
    Das, Ranjit
    Chakraborty, Rajib
    [J]. OPTICAL ENGINEERING, 2014, 53 (05)
  • [6] Growth, defect structure, and THz application of stoichiometric lithium niobate
    Lengyel, K.
    Peter, A.
    Kovacs, L.
    Corradi, G.
    Palfalvi, L.
    Hebling, J.
    Unferdorben, M.
    Dravecz, G.
    Hajdara, I.
    Szaller, Zs
    Polgar, K.
    [J]. APPLIED PHYSICS REVIEWS, 2015, 2 (04):
  • [7] Electric Field Poling of Lithium Niobate Crystals after Proton-Exchanged Channel Waveguide Fabrication
    Smirnova, A. N.
    Mushinskiy, S. S.
    Baturin, I. S.
    Azanova, I. S.
    Shevtsov, D. I.
    Akhmatkhanov, A. R.
    Ievlev, A. V.
    Shur, V. Ya.
    [J]. FERROELECTRICS, 2012, 441 : 9 - 16
  • [8] Defect Complexes in Stoichiometric Lithium Niobate Crystals Prepared by Different Processes
    N. V. Sidorov
    M. N. Palatnikov
    L. A. Bobreva
    S. A. Klimin
    [J]. Inorganic Materials, 2019, 55 : 365 - 368
  • [9] Defect Complexes in Stoichiometric Lithium Niobate Crystals Prepared by Different Processes
    Sidorov, N. V.
    Palatnikov, M. N.
    Bobreva, L. A.
    Klimin, S. A.
    [J]. INORGANIC MATERIALS, 2019, 55 (04) : 365 - 368
  • [10] Electric field periodical poling of lithium niobate crystals after soft-proton-exchanged waveguide fabrication
    O. Caballero-Calero
    M. Kösters
    T. Woike
    K. Buse
    A. García-cabañes
    M. Carrascosa
    [J]. Applied Physics B, 2007, 88 : 75 - 78