Risk sensitive optimal stopping

被引:7
|
作者
Jelito, Damian [1 ]
Pitera, Marcin [1 ]
Stettner, Lukasz [2 ]
机构
[1] Jagiellonian Univ, Inst Math, Krakow, Poland
[2] Polish Acad Sci, Inst Math, Warsaw, Poland
关键词
Optimal stopping; Bellman equation; Risk sensitive control; Risk sensitive criterion; Impulse control; IMPULSE CONTROL-PROBLEMS; FUNCTIONALS; TIME;
D O I
10.1016/j.spa.2021.03.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we consider continuous time risk sensitive optimal stopping problem. Using the probabilistic approach and dyadic discrete time approximations we prove continuity of the generic optimal stopping value function for a large class of Feller-Markov processes. Also, we provide formulas for the corresponding optimal stopping policies and study regularity of approximating functions. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:125 / 144
页数:20
相关论文
共 50 条
  • [31] OPTIMAL STOPPING IN AN URN
    CHEN, WC
    STARR, N
    ANNALS OF PROBABILITY, 1980, 8 (03): : 451 - 464
  • [32] Reflected BSDEs and robust optimal stopping for dynamic risk measures with jumps
    Quenez, Marie-Claire
    Sulem, Agnes
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (09) : 3031 - 3054
  • [33] Risk-Averse Stochastic Programming: Time Consistency and Optimal Stopping
    Pichler, Alois
    Liu, Rui Peng
    Shapiro, Alexander
    OPERATIONS RESEARCH, 2022, 70 (04) : 2439 - 2455
  • [34] OPTIMAL STOPPING WITH CONSTRAINT
    PONTIER, M
    SZPIRGLAS, J
    ADVANCES IN APPLIED PROBABILITY, 1983, 15 (04) : 798 - 812
  • [35] Optimal stopping and embedding
    Lamberton, D
    Rogers, LCG
    JOURNAL OF APPLIED PROBABILITY, 2000, 37 (04) : 1143 - 1148
  • [36] Interpretable Optimal Stopping
    Ciocan, Dragos Florin
    Misic, Velibor V.
    MANAGEMENT SCIENCE, 2022, 68 (03) : 1616 - 1638
  • [37] OPTIMAL STOPPING AND OPTIMAL MULTIPLE STOPPING PROBLEM WITHOUT AGGREGATION OF REWARD FAMILY
    Li, Hanwu
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2024,
  • [38] RISK-SENSITIVE OPTIMAL INVESTMENT POLICY
    LEFEBVRE, M
    MONTULET, P
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1994, 25 (01) : 183 - 192
  • [39] Risk-Sensitive Optimal Control of Queues
    Singh, Rahul
    Guo, Xueying
    Modiano, Eytan
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [40] Exponential risk-sensitive optimal scheduling
    Avila-Godoy, G
    Fernandez-Gaucherand, E
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 3958 - 3963