Uniqueness of entire functions and fixed points

被引:3
|
作者
Qi, Xiao-Guang [1 ]
Yang, Lian-Zhong [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
关键词
uniqueness; fixed point; sharing value; entire solutions;
D O I
10.4064/ap97-1-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f and g be entire functions, n, k and m be positive integers, and lambda, mu be complex numbers with vertical bar lambda vertical bar + vertical bar mu vertical bar not equal 0. We prove that (f(n)(z)(lambda f(m)(z) + mu))((k)) must have infinitely many fixed points if n >= k + 2, furthermore, if (f(n)(z)(lambda f(m)(z) + mu))((k)) and (g(n)(z)(lambda g(m)(z) + mu))((k)) have the same fixed points with the same multiplicities, then either f equivalent to cg for a constant c, or f and g assume certain forms provided that n > 2k + m* + 4, where m* is an integer that depends only on lambda.
引用
收藏
页码:87 / 100
页数:14
相关论文
共 50 条