McKean-Vlasov SDEs under measure dependent Lyapunov conditions

被引:35
|
作者
Hammersley, William R. P. [1 ]
Siska, David [1 ]
Szpruch, Lukasz [1 ]
机构
[1] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg,Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Mckean-Vlasov equations; Mean-field equations; Wasserstein calculus; MEAN-FIELD LIMIT; EQUATIONS;
D O I
10.1214/20-AIHP1106
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove the existence of weak solutions to McKean-Vlasov SDEs defined on a domain D subset of R-d with continuous and unbounded coefficients and degenerate diffusion coefficient. Using differential calculus for the flow of probability measures due to Lions, we introduce a novel integrated condition for Lyapunov functions in an infinite dimensional space D x P(D), where P(D) is a space of probability measures on D. Consequently we show existence of solutions to the McKean-Vlasov SDEs on [0, infinity). This leads to a probabilistic proof of the existence of a stationary solution to the nonlinear Fokker-Planck-Kolmogorov equation under very general conditions. Finally, we prove uniqueness under an integrated condition based on a Lyapunov function. This extends the standard monotone-type condition for uniqueness.
引用
收藏
页码:1032 / 1057
页数:26
相关论文
共 50 条