A quantitative approach for analyzing the spatio-temporal distribution of 3D intracellular events in fluorescence microscopy

被引:11
|
作者
Pecot, Thierry [1 ]
Liu Zengzhen [2 ]
Boulanger, Jerome [2 ]
Salamero, Jean [2 ,3 ]
Kervrann, Charles [1 ]
机构
[1] Ctr Rennes Bretagne Atlantique, Serpico Team Project, INRIA, Rennes, France
[2] PSL Res Univ, Space Time Imaging Endomembranes Dynam Team, CNRS, Inst Curie,UMR 144, Paris, France
[3] Inst Curie, Cell & Tissue Imaging Facil, IBiSA, Paris, France
来源
ELIFE | 2018年 / 7卷
关键词
BIOIMAGE INFORMATICS; GENERATIVE MODELS; PARTICLE TRACKING; CELL; IMAGE; RAB6; PLATFORM; TRANSPORT; FRAMEWORK; SELECTION;
D O I
10.7554/eLife.32311
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Analysis of the spatial distribution of endomembrane trafficking is fundamental to understand the mechanisms controlling cellular dynamics, cell homeostasy, and cell interaction with its external environment in normal and pathological situations. We present a semi-parametric framework to quantitatively analyze and visualize the spatio-temporal distribution of intracellular events from different conditions. From the spatial coordinates of intracellular features such as segmented subcellular structures or vesicle trajectories, QuantEv automatically estimates weighted densities that are easy to interpret and performs a comprehensive statistical analysis from distribution distances. We apply this approach to study the spatio-temporal distribution of moving Rab6 fluorescently labeled membranes with respect to their direction of movement in crossbow- and disk-shaped cells. We also investigate the position of the generating hub of Rab11-positive membranes and the effect of actin disruption on Rab11 trafficking in coordination with cell shape.
引用
收藏
页数:34
相关论文
共 50 条
  • [41] Evaluation of Spatio-Temporal Regional Features For 3D Face Analysis
    Sun, Yi
    Yin, Lijun
    2009 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPR WORKSHOPS 2009), VOLS 1 AND 2, 2009, : 630 - 636
  • [42] Discriminative Spatio-Temporal Pattern Discovery for 3D Action Recognition
    Weng, Junwu
    Weng, Chaoqun
    Yuan, Junsong
    Liu, Zicheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (04) : 1077 - 1089
  • [43] Spatio-temporal 3D pose estimation of objects in stereo images
    Barrois, Bjoern
    Woehler, Christian
    COMPUTER VISION SYSTEMS, PROCEEDINGS, 2008, 5008 : 507 - 516
  • [44] Spatio-temporal mobility and Twitter: 3D visualisation of mobility flows
    Osorio Arjona, Joaquin
    Garcia Palomares, Juan Carlos
    JOURNAL OF MAPS, 2020, 16 (01): : 153 - 160
  • [45] STTracker: Spatio-Temporal Tracker for 3D Single Object Tracking
    Cui, Yubo
    Li, Zhiheng
    Fang, Zheng
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (08) : 4967 - 4974
  • [46] Spatio-temporal investigation of doxorubicin in a 3D heterogeneous tumor microenvironment
    Shojaee, Pejman
    Alinezhad, Lida
    Sefidgar, Mostafa
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2020, 6 (03)
  • [47] 3D Gait Recognition Using Spatio-Temporal Motion Descriptors
    Kwolek, Bogdan
    Krzeszowski, Tomasz
    Michalczuk, Agnieszka
    Josinski, Henryk
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, PT II, 2014, 8398 : 595 - 604
  • [48] Local Spatio-Temporal Representation Using the 3D Shearlet Transform
    Damiano Malafronte
    Ernesto De Vito
    Francesca Odone
    Sampling Theory in Signal and Image Processing, 2018, 17 (1): : 57 - 72
  • [49] Spatio-temporal descriptor using 3D curvature scale space
    Dyana, A.
    Das, Sukhendu
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PROCEEDINGS, 2007, 4815 : 632 - 640
  • [50] Attention guided spatio-temporal network for 3D signature recognition
    Singh, Aradhana Kumari
    Koundal, Deepika
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (11) : 33985 - 33997