A query-driven approach to the design and management of flexible database systems

被引:0
|
作者
Chen, ANK [1 ]
Goes, PB
Marsden, JR
机构
[1] Arizona State Univ, Tempe, AZ 85287 USA
[2] Univ Connecticut, TECI, Storrs, CT 06269 USA
[3] Univ Connecticut, CITI, Dept Operat & Informat Management, Sch Business Adm, Storrs, CT 06269 USA
关键词
database management; database querying; data mining; inductive learning; information retrieval; neural networks;
D O I
10.1080/07421222.2002.11045739
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The need for timely information in the e-business world provides the impetus to develop a flexible database system with the capability to adapt and maintain performance levels under changing queries and changing business environments. Recognizing the importance of providing fast access to a variety of read-only applications in today's e-business world, we introduce the systems architecture for developing and implementing a flexible database system to achieve considerable gains in processing times of read queries. The key component of a flexible database system is query mining, the concept of determining relationships among query properties, alternative database structures, and query processing times. We validate the flexible database system concept through extensive laboratory experiments, where we embed learning tools to demonstrate the implementation of query mining.
引用
收藏
页码:121 / 154
页数:34
相关论文
共 50 条
  • [21] Scalable aggregation predictive analyticsA query-driven machine learning approach
    Christos Anagnostopoulos
    Fotis Savva
    Peter Triantafillou
    Applied Intelligence, 2018, 48 : 2546 - 2567
  • [22] Query-Driven Multi-Instance Learning
    Hsu, Yen-Chi
    Hong, Cheng-Yao
    Lee, Ming-Sui
    Liu, Tyng-Luh
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 4158 - 4165
  • [23] Query-driven approach of contextual ontology module learning using web snippets
    Ben Mustapha, Nesrine
    Aufaure, Marie-Aude
    Zghal, Hajer Baazaoui
    Ben Ghezala, Henda
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2015, 45 (01) : 61 - 94
  • [24] Query-Driven Sampling for Collective Entity Resolution
    Grant, Christan
    Wang, Daisy Zhe
    Wick, Michael
    PROCEEDINGS OF 2016 IEEE 17TH INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IEEE IRI), 2016, : 208 - 217
  • [25] Query-Driven Coordination of Multiple Answer Sets
    Bourgne, Gauvain
    Inoue, Katsumi
    DECLARATIVE AGENT LANGUAGES AND TECHNOLOGIES VIII (DALT), 2011, 6619 : 40 - 59
  • [26] Query-driven soft traceability links for models
    Ábel Hegedüs
    Ákos Horváth
    István Ráth
    Rodrigo Rizzi Starr
    Dániel Varró
    Software & Systems Modeling, 2016, 15 : 733 - 756
  • [27] Query-driven module discovery in microarray data
    Dhollander, Thomas
    Sheng, Qizheng
    Lemmens, Karen
    De Moor, Bart
    Marchal, Kathleen
    Moreau, Yves
    BIOINFORMATICS, 2007, 23 (19) : 2573 - 2580
  • [28] Query-driven soft traceability links for models
    Hegedus, Abel
    Horvath, Akos
    Rath, Istvan
    Starr, Rodrigo Rizzi
    Varro, Daniel
    SOFTWARE AND SYSTEMS MODELING, 2016, 15 (03): : 733 - 756
  • [29] Query-driven visualization of large data sets
    Stockinger, K
    Shalf, J
    Wu, KS
    Bethel, EW
    IEEE VISUALIZATION 2005, PROCEEDINGS, 2005, : 167 - 174
  • [30] Query-driven Repair of Functional Dependency Violations
    Giannakopoulou, Stella
    Karpathiotakis, Manos
    Ailamaki, Anastasia
    2020 IEEE 36TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2020), 2020, : 1894 - 1897