Scaling Laws on Multicast Capacity of Large Scale Wireless Networks

被引:8
|
作者
Wang, Cheng [1 ]
Li, Xiang-Yang [2 ]
Jiang, Changjun [1 ]
Tang, Shaojie [2 ]
Liu, Yunhao [3 ]
Zhao, Jizhong [4 ]
机构
[1] Tongji Univ, Dept Comp Sci & Technol, Shanghai 200092, Peoples R China
[2] IIT, Dept Comp Sci, Chicago, IL 60616 USA
[3] Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Hong Kong, Peoples R China
[4] Xi An Jiao Tong Univ, Dept Comp Sci & Technol, Xian, Peoples R China
基金
国家高技术研究发展计划(863计划); 中国国家自然科学基金;
关键词
Multicast Capacity; Percolation; Wireless ad hoc networks; Random networks; Achievable throughput; AD-HOC NETWORKS;
D O I
10.1109/INFCOM.2009.5062107
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we focus on the networking-theoretic multicast capacity for both random extended networks (REN) and random dense networks (RDN) under Gaussian Channel model, when all nodes are individually power-constrained. During the transmission, the power decays along path with the attenuation exponent alpha > 2. In REN and RDN, n nodes are randomly distributed in the square region with side-length root n and 1, respectively. We randomly choose n. nodes as the sources of multicast sessions, and for each source v, we pick uniformly at random n(d) nodes as the destination nodes. Based on percolation theory, we propose multicast schemes and analyze the achievable throughput by considering all possible values of n(s) and n(d). As a special case of our results, we show that for n(s) = Theta(n), the per-session multicast capacity of RDN is Theta(1/root n(d) n) when n(d) = O(n/(log n)(3)) and is Theta(1/n) when n(d) = Omega(n/log n); the per-session multicast capacity of RFN is Theta(1/root n(d) n) when n(d) = O(n/(log n)(alpha+1)) and is Theta(1/n(d) . (log n)(-alpha/2)) when n(d) = Omega(n/log n).
引用
收藏
页码:1863 / +
页数:3
相关论文
共 50 条
  • [31] On the Impact of Mobility on Multicast Capacity of Wireless Networks
    Jose, Jubin
    Abdel-Hadi, Ahmed
    Gupta, Piyush
    Vishwanath, Sriram
    [J]. 2010 PROCEEDINGS IEEE INFOCOM, 2010,
  • [32] Multicast Capacity of Wireless Ad Hoc Networks
    Li, Xiang-Yang
    [J]. IEEE-ACM TRANSACTIONS ON NETWORKING, 2009, 17 (03) : 950 - 961
  • [33] Multicast Scaling Law in Multichannel Multiradio Wireless Networks
    Fu, Luoyi
    Wang, Xinbing
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2013, 24 (12) : 2418 - 2428
  • [34] Scaling Laws for Age of Information in Wireless Networks
    Buyukates, Baturalp
    Soysal, Alkan
    Ulukus, Sennur
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (04) : 2413 - 2427
  • [35] On Secrecy Capacity Scaling in Wireless Networks
    Koyluoglu, O. Ozan
    Koksal, Can Emre
    El Gamal, Hesham
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (05) : 3000 - 3015
  • [36] Capacity Scaling of Wireless Social Networks
    Wang, Cheng
    Shao, Lu
    Li, Zhong
    Yang, Lei
    Li, Xiang-Yang
    Jiang, Changjun
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2015, 26 (07) : 1839 - 1850
  • [37] General Capacity Scaling of Wireless Networks
    Wang, Cheng
    Jiang, Changjun
    Li, Xiang-Yang
    Tang, Shaojie
    Yang, Panlong
    [J]. 2011 PROCEEDINGS IEEE INFOCOM, 2011, : 712 - 720
  • [38] On Secrecy Capacity Scaling in Wireless Networks
    Koyluoglu, O. Ozan
    Koksal, C. Emre
    El Gamal, Hesham
    [J]. 2010 INFORMATION THEORY AND APPLICATIONS WORKSHOP (ITA), 2010, : 229 - 232
  • [39] On Capacity Scaling in Arbitrary Wireless Networks
    Niesen, Urs
    Gupta, Piyush
    Shah, Devavrat
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (09) : 3959 - 3982
  • [40] Impact of Secrecy on Capacity in Large-Scale Wireless Networks
    Zhang, Jinbei
    Pu, Luoyi
    Wang, Xinbing
    [J]. 2012 PROCEEDINGS IEEE INFOCOM, 2012, : 3051 - 3055