Comparison of eigenvalues for Sturm-Liouville boundary value problems on a measure chain

被引:2
|
作者
Lawrence, BA [1 ]
Reid, DT
机构
[1] Marshall Univ, Huntington, WV 25755 USA
[2] Valdosta State Univ, Valdosta, GA 31698 USA
关键词
D O I
10.1016/S0898-1221(03)00105-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under consideration is a class of even-ordered linear differential equations (-1)(m) x(Delta2m) (t) = lambda Sigma(i=0)(m-1) pi (t)x(Delta2i) (sigma(t)), with Sturm-Liouville boundary conditions alpha(i+1)x(Delta2i) (0) - beta(i+1)x(Delta2i+1) (0) = 0, gamma(i+1)x(Delta2i) (sigma(1)) + delta(i+1)x(Delta2i+1) (sigma(1)) = 0, for 0 less than or equal to i less than or equal to M - 1. The derivative in this dynamic equation is the generalized delta-derivative defined on a measure chain. For a pair of eigenvalue problems for this dynamic equation, we first verify the existence of smallest positive eigenvalues and then establish a comparison between the smallest eigenvalues of each eigenvalue problem. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1319 / 1326
页数:8
相关论文
共 50 条