Eigenvalues of fourth-order singular Sturm-Liouville boundary value problems

被引:7
|
作者
Zhang, Xinguang [1 ]
Liu, Lishan
Zou, Huichao
机构
[1] Qufu Normal Univ, Dept Math, Qufu 273165, Shandong, Peoples R China
[2] Ludong Univ, Sch Math & Informat, Yantai 264025, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
eigenvalue problems; positive solutions; upper and lower solutions; maximal principle;
D O I
10.1016/j.na.2006.11.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by establishing a new comparison theorem and constructing upper and lower solutions, some sufficient conditions of existence of positive solutions for the following nonlinear fourth-order singular Sturm-Liouville eigenvalue problem: [GRAPHICS] are established due to the Schauder's fixed point theorem for lambda large enough, where alpha, beta, gamma, delta >= 0 beta gamma + alpha gamma + alpha delta > 0, f and p can be singular at t = 0 and/or 1; moreover f can also be singular at u = 0. In addition, some peculiar cases are discussed and some further results are obtained. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:384 / 392
页数:9
相关论文
共 50 条
  • [1] Dependence of eigenvalues of a class of fourth-order Sturm-Liouville problems on the boundary
    Ge, Suqin
    Wang, Wanyi
    Suo, Jianqing
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 220 : 268 - 276
  • [2] Eigenvalues of a class of regular fourth-order Sturm-Liouville problems
    Suo, Jianqing
    Wang, Wanyi
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (19) : 9716 - 9729
  • [3] An efficient technique for finding the eigenvalues of fourth-order Sturm-Liouville problems
    Syam, Muhammed I.
    Siyyam, Hani I.
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 39 (02) : 659 - 665
  • [4] Eigenvalues of regular fourth-order Sturm-Liouville problems with transmission conditions
    Li, Kun
    Sun, Jiong
    Hao, Xiaoling
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (10) : 3538 - 3551
  • [5] Discrete fourth-order Sturm-Liouville problems
    Ben-Artzi, Matania
    Croisille, Jean-Pierre
    Fishelov, Dalia
    Katzir, Ron
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (03) : 1485 - 1522
  • [6] An efficient method for computing eigenelements of Sturm-Liouville fourth-order boundary value problems
    Attili, B. S.
    Lesnic, D.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (02) : 1247 - 1254
  • [7] Fliess series approach to the computation of the eigenvalues of fourth-order Sturm-Liouville problems
    Chanane, B
    [J]. APPLIED MATHEMATICS LETTERS, 2002, 15 (04) : 459 - 463
  • [8] An efficient technique for finding the eigenvalues and the eigenelements of fourth-order Sturm-Liouville problems
    El-Gamel M.
    El-Azab M.S.
    Fathy M.
    [J]. SeMA Journal, 2017, 74 (1) : 37 - 56
  • [9] A fourth-order boundary value problem for a Sturm-Liouville type equation
    Bonanno, Gabriele
    Di Bella, Beatrice
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (08) : 3635 - 3640
  • [10] DEPENDENCE OF EIGENVALUES ON THE REGULAR FOURTH-ORDER STURM-LIOUVILLE PROBLEM
    Suo, Jianqing
    Shi, Zhijie
    Wei, Zhen
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (05): : 2788 - 2807