Tsallis and Renyi entropies in fractional diffusion and entropy production

被引:40
|
作者
Essex, C
Schulzky, C
Franz, A
Hoffmann, KH [1 ]
机构
[1] Tech Univ, Inst Phys, D-09107 Chemnitz, Germany
[2] Univ Western Ontario, Dept Appl Math, London, ON N6A 5B7, Canada
来源
PHYSICA A | 2000年 / 284卷 / 1-4期
关键词
fractional diffusion equation; irreversible processes; entropy production; Renyi entropy; Tsallis entropy;
D O I
10.1016/S0378-4371(00)00174-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The entropy production rate for fractional diffusion processes using Shannon entropy was calculated previously, which showed an apparently counter intuitive increase with the transition from dissipative diffusion behaviour to reversible wave propagation. Renyi and Tsallis entropies, which have an additional parameter q generalizing the Shannon case (q = 1), are shown here to have similar counter intuitive behaviours. However, the issue can be successfully treated in exactly the same manner as with Shannon entropy for q being not too large (i.e., generalizations near the Shannon case), whereas for larger q the Renyi and Tsallis entropies behave in a different way. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:299 / 308
页数:10
相关论文
共 50 条
  • [31] Coherence as entropy increment for Tsallis and Rényi entropies
    Anna Vershynina
    [J]. Quantum Information Processing, 22
  • [32] Comment on "Critique of multinomial coefficient method for evaluating Tsallis and Renyi entropies" by AS Parvan
    Oikonomou, Thomas
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (05) : 781 - 784
  • [33] Software Code Smell Prediction Model Using Shannon, Renyi and Tsallis Entropies
    Gupta, Aakanshi
    Suri, Bharti
    Kumar, Vijay
    Misra, Sanjay
    Blazauskas, Tomas
    Damasevicius, Robertas
    [J]. ENTROPY, 2018, 20 (05)
  • [34] Tsallis, Renyi, and Shannon entropies for time-dependent mesoscopic RLC circuits
    Aguiar, V.
    Guedes, I.
    Pedrosa, I. A.
    [J]. PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2015, 2015 (11):
  • [35] Renyi and Tsallis entropies of the Dirichlet and Neumann one-dimensional quantum wells
    Olendski, Oleg
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2020, 120 (12)
  • [36] The entropy production paradox for fractional diffusion
    Hoffmann, Karl Heinz
    Essex, Christopher
    Prehl, Janett
    Kulmus, Kathrin
    [J]. JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 2023, 48 (02) : 137 - 148
  • [37] Symmetric Fractional Diffusion and Entropy Production
    Prehl, Janett
    Boldt, Frank
    Hoffmann, Karl Heinz
    Essex, Christopher
    [J]. ENTROPY, 2016, 18 (07):
  • [38] A Direct Link between Renyi-Tsallis Entropy and Holder's Inequality-Yet Another Proof of Renyi-Tsallis Entropy Maximization
    Tanaka, Hisa-Aki
    Nakagawa, Masaki
    Oohama, Yasutada
    [J]. ENTROPY, 2019, 21 (06)
  • [39] Comparison of Shannon, Renyi and Tsallis entropy used in decision trees
    Maszczyk, Tomasz
    Duch, Wlodzislaw
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2008, PROCEEDINGS, 2008, 5097 : 643 - 651
  • [40] Multi-objective optimization for worldview image segmentation funded on the entropies of Tsallis and Renyi
    Mechkouri, Salah Eddine
    El Joumani, Saleh
    Zennouhi, Rachid
    Masmoudi, Lhoussaine
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (41-42) : 30637 - 30652