The spherical k-means plus plus algorithm via local search scheme

被引:2
|
作者
Tian, Xiaoyun [1 ]
Xu, Dachuan [1 ]
Du, Donglei [2 ]
Gai, Ling [3 ]
机构
[1] Beijing Univ Technol, Dept Operat Res & Informat Engn, Beijing 100124, Peoples R China
[2] Univ New Brunswick, Fac Management, Fredericton, NB E3B 9Y2, Canada
[3] Donghua Univ, Glorious Sun Sch Business & Management, Shanghai 200051, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Spherical k-means; Local search; Seeding algorithm; Approximation algorithm; CLUSTERING-ALGORITHM;
D O I
10.1007/s10878-021-00737-x
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The spherical k-means problem (SKMP) is an important variant of the k-means clustering problem (KMP). In this paper, we consider the SKMP, which aims to divide the n points in a given data point set S into k clusters so as to minimize the total sum of the cosine dissimilarity measure from each data point to their respective closest cluster center. Our main contribution is to design an expected constant approximation algorithm for the SKMP by integrating the seeding algorithm for the KMP and the local search technique. By utilizing the structure of the clusters, we further obtain an improved LocalSearch++ algorithm involving epsilon k local search steps.
引用
收藏
页码:2375 / 2394
页数:20
相关论文
共 50 条
  • [21] Extracting most significant data about the user queries from the search engine by K-means plus plus algorithm
    Gomathi, A.
    Raja, K.
    FIRST INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN ENGINEERING, TECHNOLOGY AND SCIENCE - ICETETS 2016, 2016,
  • [22] Local Search Approximation Algorithms for the Spherical k-Means Problem
    Zhang, Dongmei
    Cheng, Yukun
    Li, Min
    Wang, Yishui
    Xu, Dachuan
    ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, AAIM 2019, 2019, 11640 : 341 - 351
  • [23] Local search-based meta-heuristics combined with an improved K-Means plus plus clustering algorithm for unmanned surface vessel scheduling
    Tang, Weiyu
    Gao, Kaizhou
    Ma, Zhenfang
    Lin, Zhongjie
    Yu, Hui
    Huang, Wuze
    Wu, Naiqi
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2025,
  • [24] k-means plus plus : The Advantages of Careful Seeding
    Arthur, David
    Vassilvitskii, Sergei
    PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2007, : 1027 - 1035
  • [25] Efficient k-Means plus plus Approximation with MapReduce
    Xu, Yujie
    Qu, Wenyu
    Li, Zhiyang
    Min, Geyong
    Li, Keqiu
    Liu, Zhaobin
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2014, 25 (12) : 3135 - 3144
  • [26] Efficient k-means plus plus with Random Projection
    Chan, Jan Y. K.
    Leung, Alex Po
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 94 - 100
  • [27] Approximate K-Means plus plus in Sublinear Time
    Bachem, Olivier
    Lucic, Mario
    Hassani, S. Hamed
    Krause, Andreas
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 1459 - 1467
  • [28] A local search algorithm for k-means with outliers q
    Zhang, Zhen
    Feng, Qilong
    Huang, Junyu
    Guo, Yutian
    Xu, Jinhui
    Wang, Jianxin
    NEUROCOMPUTING, 2021, 450 : 230 - 241
  • [29] k-Means plus plus under approximation stability
    Agarwal, Manu
    Jaiswal, Ragesh
    Pal, Arindam
    THEORETICAL COMPUTER SCIENCE, 2015, 588 : 37 - 51
  • [30] A local search approximation algorithm for k-means clustering
    Kanungo, T
    Mount, DM
    Netanyahu, NS
    Piatko, CD
    Silverman, R
    Wu, AY
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2004, 28 (2-3): : 89 - 112