The spherical k-means plus plus algorithm via local search scheme

被引:2
|
作者
Tian, Xiaoyun [1 ]
Xu, Dachuan [1 ]
Du, Donglei [2 ]
Gai, Ling [3 ]
机构
[1] Beijing Univ Technol, Dept Operat Res & Informat Engn, Beijing 100124, Peoples R China
[2] Univ New Brunswick, Fac Management, Fredericton, NB E3B 9Y2, Canada
[3] Donghua Univ, Glorious Sun Sch Business & Management, Shanghai 200051, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Spherical k-means; Local search; Seeding algorithm; Approximation algorithm; CLUSTERING-ALGORITHM;
D O I
10.1007/s10878-021-00737-x
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The spherical k-means problem (SKMP) is an important variant of the k-means clustering problem (KMP). In this paper, we consider the SKMP, which aims to divide the n points in a given data point set S into k clusters so as to minimize the total sum of the cosine dissimilarity measure from each data point to their respective closest cluster center. Our main contribution is to design an expected constant approximation algorithm for the SKMP by integrating the seeding algorithm for the KMP and the local search technique. By utilizing the structure of the clusters, we further obtain an improved LocalSearch++ algorithm involving epsilon k local search steps.
引用
收藏
页码:2375 / 2394
页数:20
相关论文
共 50 条
  • [1] A Better k-means plus plus Algorithm via Local Search
    Lattanzi, Silvio
    Sohler, Christian
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [2] An Improved Bregman k-means plus plus Algorithm via Local Search
    Tian, Xiaoyun
    Xu, Dachuan
    Guo, Longkun
    Wu, Dan
    COMPUTING AND COMBINATORICS (COCOON 2020), 2020, 12273 : 532 - 541
  • [3] The spherical k-means++ algorithm via local search scheme
    Xiaoyun Tian
    Dachuan Xu
    Donglei Du
    Ling Gai
    Journal of Combinatorial Optimization, 2022, 44 : 2375 - 2394
  • [4] On the Consistency of k-means plus plus algorithm
    Klopotek, Mieczyslaw A.
    FUNDAMENTA INFORMATICAE, 2020, 172 (04) : 361 - 377
  • [5] Improved Guarantees for k-means plus plus and k-means plus plus Parallel
    Makarychev, Konstantin
    Reddy, Aravind
    Shan, Liren
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [6] Global k-means plus plus : an effective relaxation of the global k-means clustering algorithm
    Vardakas, Georgios
    Likas, Aristidis
    APPLIED INTELLIGENCE, 2024, 54 (19) : 8876 - 8888
  • [7] Exact Acceleration of K-Means plus plus and K-Means∥
    Raff, Edward
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 2928 - 2935
  • [8] Fast Scalable k-means plus plus Algorithm with MapReduce
    Xu, Yujie
    Qu, Wenyu
    Li, Zhiyang
    Ji, Changqing
    Li, Yuanyuan
    Wu, Yinan
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2014, PT II, 2014, 8631 : 15 - 28
  • [9] Using k-Means plus plus Algorithm for Researchers Clustering
    Rukmi, Alvida Mustika
    Iqbal, Ikhwan Muhammad
    INTERNATIONAL CONFERENCE ON MATHEMATICS: PURE, APPLIED AND COMPUTATION: EMPOWERING ENGINEERING USING MATHEMATICS, 2017, 1867
  • [10] An approximation algorithm for the spherical k-means problem with outliers by local search
    Wang, Yishui
    Wu, Chenchen
    Zhang, Dongmei
    Zou, Juan
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (04) : 2410 - 2422