Chitosan/hydroxyapatite composite bone tissue engineering scaffolds with dual and decoupled therapeutic ion delivery: copper and strontium

被引:117
|
作者
Gritsch, Lukas [1 ,2 ,5 ]
Maqbool, Muhammad [1 ,2 ]
Mourino, Viviana [3 ,4 ]
Ciraldo, Francesca E. [1 ]
Cresswell, Mark [2 ]
Jackson, Philip R. [2 ]
Lovell, Christopher [2 ]
Boccaccini, Aldo R. [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nuremberg, Inst Biomat, Cauerstr 6, D-91058 Erlangen, Germany
[2] Lucideon Ltd, Queens Rd, Stoke On Trent ST4 7LQ, Staffs, England
[3] Univ Buenas Aires, Pharmaceut Technol Dept, Buenos Aires, DF, Argentina
[4] Consejo Nacl Invest Cient & Tecn, Natl Res Council, Buenos Aires, DF, Argentina
[5] Univ Clermont Auvergne, Inst Natl Phys Nucl & Phys Particules, CNRS, LPC,IN2P3, 4 Ave Blaise Pascal, F-63178 Aubiere, France
基金
欧盟地平线“2020”;
关键词
CALCIUM-PHOSPHATE CEMENT; GLASS-CERAMIC SCAFFOLDS; SUBSTITUTED HYDROXYAPATITES; BIOMEDICAL APPLICATIONS; CHITOSAN SCAFFOLDS; BIOMATERIALS; BEHAVIOR; SIZE; OSTEOCONDUCTIVITY; FABRICATION;
D O I
10.1039/c9tb00897g
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Therapeutic metal ions are a family of metal ions characterized by specific biological properties that could be exploited in bone tissue engineering, avoiding the use of expensive and potentially problematic growth factors and other sensitive biomolecules. In this work, we report the successful preparation and characterization of two material platforms containing therapeutic ions: a copper(ii)-chitosan derivative and a strontium-substituted hydroxyapatite. These biomaterials showed ideal ion release profiles, offering burst release of an antibacterial agent together with a more sustained release of strontium in order to achieve long-term osteogenesis. We combined copper(ii)-chitosan and strontium-hydroxyapatite into freeze-dried composite scaffolds. These scaffolds were characterized in terms of morphology, mechanical properties and bioactivity, defined here as the ability to trigger the deposition of novel calcium phosphate in contact with biological fluids. In addition, a preliminary biological characterization using cell line osteoblasts was performed. Our results highlighted that the combination of chitosan and hydroxyapatite in conjunction with copper and strontium has great potential in the design of novel scaffolds. Chitosan/HA composites can be an ideal technology for the development of tissue engineering scaffolds that deliver a complex arrays of therapeutic ions in both components of the composite, leading to tailored biological effects, from antibacterial activity, to osteogenesis and angiogenesis.
引用
收藏
页码:6109 / 6124
页数:16
相关论文
共 50 条
  • [1] Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering
    Lei, Yong
    Xu, Zhengliang
    Ke, Qinfei
    Yin, Wenjing
    Chen, Yixuan
    Zhang, Changqing
    Guo, Yaping
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 72 : 134 - 142
  • [2] Strontium-modified chitosan/montmorillonite composite scaffolds for bone tissue engineering
    Koc, A.
    Autefage, H.
    Elcin, Y. M.
    Stevens, M. M.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2012, 6 : 37 - 37
  • [3] Biocompatiable silk fibroin/carboxymethyl chitosan/strontium substituted hydroxyapatite/cellulose nanocrystal composite scaffolds for bone tissue engineering
    Zhang, Xiao-yun
    Chen, Yue-ping
    Han, Jie
    Mo, Jian
    Dong, Pan-feng
    Zhuo, Ying-hong
    Feng, Yang
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2019, 136 : 1247 - 1257
  • [4] Chitosan-amylopectin/hydroxyapatite and chitosan-chondroitin sulphate/hydroxyapatite composite scaffolds for bone tissue engineering
    Venkatesan, Jayachandran
    Pallela, Ramjee
    Bhatnagar, Ira
    Kim, Se-Kwon
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2012, 51 (05) : 1033 - 1042
  • [5] A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering
    Kong, Lijun
    Gao, Yuan
    Lu, Guangyuan
    Gong, Yandao
    Zhao, Nanming
    Zhang, Xiufang
    EUROPEAN POLYMER JOURNAL, 2006, 42 (12) : 3171 - 3179
  • [6] Hydroxyapatite scaffolds containing copper for bone tissue engineering
    Fanrong Ai
    Litao Chen
    Jinchao Yan
    Kang Yang
    Shuiyuan Li
    Huyang Duan
    Chuanliang Cao
    Wenchao Li
    Kui Zhou
    Journal of Sol-Gel Science and Technology, 2020, 95 : 168 - 179
  • [7] Hydroxyapatite scaffolds containing copper for bone tissue engineering
    Ai, Fanrong
    Chen, Litao
    Yan, Jinchao
    Yang, Kang
    Li, Shuiyuan
    Duan, Huyang
    Cao, Chuanliang
    Li, Wenchao
    Zhou, Kui
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2020, 95 (01) : 168 - 179
  • [8] In vivo evaluation of porous hydroxyapatite/chitosan-alginate composite scaffolds for bone tissue engineering
    Jin, Hyeong-Ho
    Kim, Dong-Hyun
    Kim, Tae-Wan
    Shin, Keun-Koo
    Jung, Jin Sup
    Park, Hong-Chae
    Yoon, Seog-Young
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2012, 51 (05) : 1079 - 1085
  • [9] Preparation and evaluation of nano-hydroxyapatite/β-tricalciumphosphate/chitosan composite scaffolds for bone tissue engineering
    Lin, T.
    Zhang, S. M.
    Li, J.
    Zhang, L.
    Liu, Y. H.
    Xue, Y. H.
    BIOCERAMICS, VOL 20, PTS 1 AND 2, 2008, 361-363 : 463 - 466
  • [10] Additive manufacturing of hydroxyapatite-chitosan-genipin composite scaffolds for bone tissue engineering applications
    Zafeiris, K.
    Brasinika, D.
    Karatza, A.
    Koumoulos, Elias
    Karoussis, I. K.
    Kyriakidou, K.
    Charitidis, C. A.
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2021, 119