Biocompatiable silk fibroin/carboxymethyl chitosan/strontium substituted hydroxyapatite/cellulose nanocrystal composite scaffolds for bone tissue engineering

被引:87
|
作者
Zhang, Xiao-yun [1 ]
Chen, Yue-ping [1 ]
Han, Jie [1 ]
Mo, Jian [1 ]
Dong, Pan-feng [1 ]
Zhuo, Ying-hong [1 ]
Feng, Yang [1 ]
机构
[1] Guangxi Univ Chinese Med, Ruikang Hosp, Dept Orthoped, Nanning 530011, Guangxi Zhuang, Peoples R China
基金
中国国家自然科学基金;
关键词
Bone repair scaffold; Silk fibroin; Strontium substituted hydroxyapatite; Cellulose nanocrystal; Bone tissue engineering; MARROW STROMAL CELLS; FIBROIN SCAFFOLDS; ADIPOGENIC DIFFERENTIATION; NANOSCALE HYDROXYAPATITE; CELLULOSE NANOCRYSTALS; STEM-CELLS; HYDROGEL; REGENERATION; FABRICATION; EXPRESSION;
D O I
10.1016/j.ijbiomac.2019.06.172
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bone defects arise from trauma, skeletal diseases or tumor resections have become a critical clinical challenge. Biocomposite materials as artificial bone repair materials provide a promising approach for bone regeneration. In this study, we used silk fibroin (SF), carboxymethyl chitosan (CMCS), cellulose nanocrystals (CNCs) and strontium substituted hydroxyapatite (Sr-HAp) to prepare the biocomposite scaffolds of SF/CMCS, SF/CMCS/CNCs, SF/CMCS/CNCs/Sr-HAp. The characterization results showed that all the SF-based scaffolds have a porous spongelike structure with porosities over 80%. In addition, there was a significant increase in compressive strength of SF/CMCS/Sr-HAp/CNCs scaffold when compared to that of SF/CMCS scaffolds, while maintaining high porosity with lower swelling ratio. All the SF-based scaffolds were non-toxic and had a good hemocompatibility. Comparing to the SF/CMCS scaffold, the scaffolds with addition of Sr-HAp and/or CNCs showed enhanced protein adsorption and ALP activity. In addition, higher expression of osteogenic gene markers such as RUNX2, ALP, OCN, OPN, BSP and COL-1 further substantiated the applicability of SF/CMCS/Sr-HAp/CNCs scaffolds for bone related applications. Hence, this study suggests that SF/CMCS/Sr-HAp/CNCs scaffolds have a potential in non-loading bone repair application. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:1247 / 1257
页数:11
相关论文
共 50 条
  • [1] Study on tissue engineering scaffolds of silk fibroin-chitosan/nano-hydroxyapatite composite
    Wen, Guangwu
    Wang, Jing
    Li, Muqin
    Meng, Xiangcai
    BIOCERAMICS, VOL 19, PTS 1 AND 2, 2007, 330-332 : 971 - +
  • [2] Fabrication of silk fibroin/cellulose whiskers–chitosan composite porous scaffolds by layer-by-layer assembly for application in bone tissue engineering
    Jian-Xin He
    Wei-Lin Tan
    Qi-Ming Han
    Shi-Zhong Cui
    Weili Shao
    Feng Sang
    Journal of Materials Science, 2016, 51 : 4399 - 4410
  • [3] Generation of bioactive nano-composite scaffold of nanobioglass/silk fibroin/carboxymethyl cellulose for bone tissue engineering
    Singh, B. N.
    Pramanik, K.
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2018, 29 (16) : 2011 - 2034
  • [4] 3D Printing Silk Fibroin/Hydroxyapatite/Sodium Alginate Composite Scaffolds for Bone Tissue Engineering
    Zhenyu Xu
    Ke Li
    Kui Zhou
    Shuiyuan Li
    Hongwei Chen
    Jiaqi Zeng
    Rugang Hu
    Fibers and Polymers, 2023, 24 : 275 - 283
  • [5] 3D Printing Silk Fibroin/Hydroxyapatite/Sodium Alginate Composite Scaffolds for Bone Tissue Engineering
    Xu, Zhenyu
    Li, Ke
    Zhou, Kui
    Li, Shuiyuan
    Chen, Hongwei
    Zeng, Jiaqi
    Hu, Rugang
    FIBERS AND POLYMERS, 2023, 24 (01) : 275 - 283
  • [6] Hydroxyapatite reinforced inherent RGD containing silk fibroin composite scaffolds: Promising platform for bone tissue engineering
    Behera, Sibaram
    Naskar, Deboki
    Sapru, Sunaina
    Bhattacharjee, Promita
    Dey, Tuli
    Ghosh, Ananta K.
    Mandal, Mahitosh
    Kundu, Subhas C.
    NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2017, 13 (05) : 1745 - 1759
  • [7] Silk fibroin/hydroxyapatite composites for bone tissue engineering
    Farokhi, Mehdi
    Mottaghitalab, Fatemeh
    Samani, Saeed
    Shokrgozar, Mohammad Ali
    Kundu, Subhas C.
    Reis, Rui L.
    Fatahi, Yousef
    Kaplan, David L.
    BIOTECHNOLOGY ADVANCES, 2018, 36 (01) : 68 - 91
  • [8] Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering
    Lei, Yong
    Xu, Zhengliang
    Ke, Qinfei
    Yin, Wenjing
    Chen, Yixuan
    Zhang, Changqing
    Guo, Yaping
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 72 : 134 - 142
  • [9] Scaffolds containing chitosan/carboxymethyl cellulose/mesoporous wollastonite for bone tissue engineering
    Sainitya, R.
    Sriram, M.
    Kayanaraman, V.
    Dhivya, S.
    Saravanan, S.
    Vairamani, M.
    Sastry, T. P.
    Selvamurugan, N.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2015, 80 : 481 - 488
  • [10] Chitosan/β-TCP composites scaffolds coated with silk fibroin: a bone tissue engineering approach
    Piaia, Lya
    Silva, Simone S.
    Gomes, Joana M.
    Franco, Albina R.
    Fernandes, Emanuel M.
    Lobo, Flavia C. M.
    Rodrigues, Luisa C.
    Leonor, Isabel B.
    Fredel, Marcio C.
    Salmoria, Gean, V
    Hotza, Dachamir
    Reis, Rui L.
    BIOMEDICAL MATERIALS, 2022, 17 (01)