Biocompatiable silk fibroin/carboxymethyl chitosan/strontium substituted hydroxyapatite/cellulose nanocrystal composite scaffolds for bone tissue engineering

被引:87
|
作者
Zhang, Xiao-yun [1 ]
Chen, Yue-ping [1 ]
Han, Jie [1 ]
Mo, Jian [1 ]
Dong, Pan-feng [1 ]
Zhuo, Ying-hong [1 ]
Feng, Yang [1 ]
机构
[1] Guangxi Univ Chinese Med, Ruikang Hosp, Dept Orthoped, Nanning 530011, Guangxi Zhuang, Peoples R China
基金
中国国家自然科学基金;
关键词
Bone repair scaffold; Silk fibroin; Strontium substituted hydroxyapatite; Cellulose nanocrystal; Bone tissue engineering; MARROW STROMAL CELLS; FIBROIN SCAFFOLDS; ADIPOGENIC DIFFERENTIATION; NANOSCALE HYDROXYAPATITE; CELLULOSE NANOCRYSTALS; STEM-CELLS; HYDROGEL; REGENERATION; FABRICATION; EXPRESSION;
D O I
10.1016/j.ijbiomac.2019.06.172
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bone defects arise from trauma, skeletal diseases or tumor resections have become a critical clinical challenge. Biocomposite materials as artificial bone repair materials provide a promising approach for bone regeneration. In this study, we used silk fibroin (SF), carboxymethyl chitosan (CMCS), cellulose nanocrystals (CNCs) and strontium substituted hydroxyapatite (Sr-HAp) to prepare the biocomposite scaffolds of SF/CMCS, SF/CMCS/CNCs, SF/CMCS/CNCs/Sr-HAp. The characterization results showed that all the SF-based scaffolds have a porous spongelike structure with porosities over 80%. In addition, there was a significant increase in compressive strength of SF/CMCS/Sr-HAp/CNCs scaffold when compared to that of SF/CMCS scaffolds, while maintaining high porosity with lower swelling ratio. All the SF-based scaffolds were non-toxic and had a good hemocompatibility. Comparing to the SF/CMCS scaffold, the scaffolds with addition of Sr-HAp and/or CNCs showed enhanced protein adsorption and ALP activity. In addition, higher expression of osteogenic gene markers such as RUNX2, ALP, OCN, OPN, BSP and COL-1 further substantiated the applicability of SF/CMCS/Sr-HAp/CNCs scaffolds for bone related applications. Hence, this study suggests that SF/CMCS/Sr-HAp/CNCs scaffolds have a potential in non-loading bone repair application. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:1247 / 1257
页数:11
相关论文
共 50 条
  • [21] Synthesis of aligned porous polyethylene glycol/silk fibroin/hydroxyapatite scaffolds for osteoinduction in bone tissue engineering
    Yang, Yuchao
    Feng, Yanting
    Qu, Rongmei
    Li, Qingtao
    Rong, Dongming
    Fan, Tingyu
    Yang, Yiting
    Sun, Bing
    Bi, Zhenyu
    Khan, Asmat Ullah
    Deng, Ting
    Dai, Jingxing
    Ouyang, Jun
    STEM CELL RESEARCH & THERAPY, 2020, 11 (01)
  • [22] Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering
    Shanmugavel, Suganya
    Reddy, Venugopal Jayarama
    Ramakrishna, Seeram
    Lakshmi, B. S.
    Dev, V. R. Giri
    JOURNAL OF BIOMATERIALS APPLICATIONS, 2014, 29 (01) : 46 - 58
  • [23] Pectin/carboxymethyl cellulose/microfibrillated cellulose composite scaffolds for tissue engineering
    Ninan, Neethu
    Muthiah, Muthunarayanan
    Park, In-Kyu
    Elain, Anne
    Thomas, Sabu
    Grohens, Yves
    CARBOHYDRATE POLYMERS, 2013, 98 (01) : 877 - 885
  • [24] Synthesis of aligned porous polyethylene glycol/silk fibroin/hydroxyapatite scaffolds for osteoinduction in bone tissue engineering
    Yuchao Yang
    Yanting Feng
    Rongmei Qu
    Qingtao Li
    Dongming Rong
    Tingyu Fan
    Yiting Yang
    Bing Sun
    Zhenyu Bi
    Asmat Ullah Khan
    Ting Deng
    Jingxing Dai
    Jun Ouyang
    Stem Cell Research & Therapy, 11
  • [25] Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering
    Jiang Liuyun
    Li Yubao
    Xiong Chengdong
    JOURNAL OF BIOMEDICAL SCIENCE, 2009, 16
  • [26] Chitosan-amylopectin/hydroxyapatite and chitosan-chondroitin sulphate/hydroxyapatite composite scaffolds for bone tissue engineering
    Venkatesan, Jayachandran
    Pallela, Ramjee
    Bhatnagar, Ira
    Kim, Se-Kwon
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2012, 51 (05) : 1033 - 1042
  • [27] Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering
    Jiang Liuyun
    Li Yubao
    Xiong Chengdong
    Journal of Biomedical Science, 16
  • [28] Silk Fibroin-Alginate-Hydroxyapatite Composite Particles in Bone Tissue Engineering Applications In Vivo
    Jo, You-Young
    Kim, Seong-Gon
    Kwon, Kwang-Jun
    Kweon, HaeYong
    Chae, Weon-Sik
    Yang, Won-Geun
    Lee, Eun-Young
    Seok, Hyun
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2017, 18 (04):
  • [29] Chitosan-chitin nanocrystal composite scaffolds for tissue engineering
    Liu, Mingxian
    Zheng, Huanjun
    Chen, Juan
    Li, Shuangli
    Huang, Jianfang
    Zhou, Changren
    CARBOHYDRATE POLYMERS, 2016, 152 : 832 - 840
  • [30] Silk fibroin microfibers and chitosan modified poly (glycerol sebacate) composite scaffolds for skin tissue engineering
    Zhang, Xiaolan
    Jia, Chuanlong
    Qiao, Xiuying
    Liu, Tianyi
    Sun, Kang
    POLYMER TESTING, 2017, 62 : 88 - 95